The AGATA Spectrometer

Lead Research Organisation: University of York
Department Name: Physics

Abstract

AGATA / the Advanced GAmma Tracking Array - will be the world's pre-eminent device for studies of the femtoscale structure of matter. By measuring the properties of gamma rays emitted by atomic nuclei with unprecedented sensitivity, AGATA will provide new insights into nuclear and sub-nuclear behaviour and will address fundamental issues such as the limits of nuclear existence and the origin of the elements in the universe. Recent experimental results have begun to suggest that nuclei far from stability may behave very differently from their near-stable neighbours. For a complete understanding of nuclear structure, we need to understand the behaviour of all atomic nuclei, not just the small subset close to stability. New experimental methods therefore need to be developed, to study nuclei ever further from stability. For example, radioactive-ion beam accelerators are now becoming available. Their use presents a wealth of new challenges; low beam intensities and high background counts will require new, ultra-sensitive experimental techniques. Gamma-ray spectroscopy is one of the foremost techniques for studying nuclear structure. For this reason, many technological advances in gamma-ray detection have been made over the years. In the 1980s, UK nuclear physicists pioneered the development of gamma-ray spectrometers made up of arrays of germanium detectors. A problem with such detectors is that the spectral response is impaired if a gamma ray scatters out of the detector without depositing its full energy. As a remedy, the method of escape suppression is used, whereby the germanium detector is surrounded by a second detector - a suppression shield - which vetoes scattered gamma rays. Although this method significantly improves the quality of the spectra, the shield occupies a valuable fraction of the 4pi solid angle, limiting the overall detection efficiency. In the 1990s developments culminated in two large spectrometers: Euroball (Europe) and Gammasphere (USA) each made up of ~100 escape-suppressed germanium detectors. A giant step forward would be made by dispensing with shields, and building a gamma-ray spectrometer solely from germanium detectors. Instead of vetoing, and losing, scattered gamma rays, they could be tracked from one detector to another. This is the underlying principle of AGATA. Although tracking sounds straightforward, in practice it is complex / it is necessary to record the energy and position of every gamma-ray interaction, in order to track a scattered gamma ray from one detector to another, and thereby determine its full energy by event reconstruction. The complexity however pays off as AGATA will have sensitivity over 1000 times better than its predecessors. Gamma-ray tracking is thus at the forefront of nuclear-physics research throughout the world. Tracking is also important in other fields, for example, in nuclear medical imaging where the reconstruction of gamma-ray energies will vastly improve resolution. AGATA will be developed and built by a large European collaboration of physicists from over 12 countries. The UK is a major part of the collaboration, exploiting its many years of leadership in the field, with expertise in several key areas. Ultimately AGATA will consist of 180 detectors. The project will be realized in phases; this request covers the phase from 2008 to 2012, where the aim is to build a quarter of the full array. Initially, a 15-detector sub-array - the AGATA Demonstrator - will be built; although its main purpose is to demonstrate the feasibility of tracking, it will be a powerful device in its own right. AGATA will be continually expanded, and will be operated at three European laboratories before 2012 each with different characteristics: initially at the stable-beam facility at Legnaro in Italy, and later at radioactive-beam facilities at GANIL in France and GSI in Germany. Following on from this grant period, the complete AGATA spectrometer will be built by 2015.

Publications

10 25 50
publication icon
Akkoyun S (2012) AGATA-Advanced GAmma Tracking Array in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

publication icon
Alexander T (2015) Isomeric Ratios in $^{206}$Hg in Acta Physica Polonica B

publication icon
Golubev P. (2013) The Lund-York-Cologne Calorimeter (LYCCA): Concept, design and prototype developments for a FAIR-NUSTAR detector system to discriminate relativistic heavy-ion reaction products in NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT

publication icon
Pietralla N (2014) On the Road to FAIR: 1 st Operation of AGATA in PreSPEC at GSI in EPJ Web of Conferences

 
Description This grant funded a PhD student to work on a simulation package for the Advanced GAmma ray Tracking Array (AGATA). This covered the use of the Compton tracking array at high energy facilities such as the GSI laboratory in Germany. A working simulation package was produced and results calculated for various experimental conditions that were expected to prevail at the GSI laboratory during the first AGATA campaign. The package has been lodged at Daresbury laboratory for future use.
Exploitation Route The package is documented and can be used by others wishing to perform simulations of relativistic Coulomb excitation experiments at GSI laboratory in the future.
Sectors Education

 
Description AGATA collaboration 
Organisation Daresbury Laboratory
Country United Kingdom 
Sector Private 
PI Contribution Work was carried out to simulate the performance of the AGATA demonstrator array for use with relativistic beams at GSI. Codes were developed and are currently stored at Daresbury laboratory under the supervision of Dr M Labiche.
Collaborator Contribution Collaborators from various countries involved with the AGATA spectrometer have contributed to the development work of the simulation codes. The spectrometer itself is funded by many different European countries, including the UK.
Impact Outcomes have been achieved by other research groups in the UK associated with the AGATA grants, notably Dr A Boston from the University of Liverpool and the nuclear physics team at the Daresbury laboratory. The work involved in developing the detectors used for AGATA and the processing of the signals has had impact on development of radiation detection methods in medical physics.
 
Description AGATA collaboration 
Organisation University of Brighton
Department Arts and Humanities
Country United Kingdom 
Sector Academic/University 
PI Contribution Work was carried out to simulate the performance of the AGATA demonstrator array for use with relativistic beams at GSI. Codes were developed and are currently stored at Daresbury laboratory under the supervision of Dr M Labiche.
Collaborator Contribution Collaborators from various countries involved with the AGATA spectrometer have contributed to the development work of the simulation codes. The spectrometer itself is funded by many different European countries, including the UK.
Impact Outcomes have been achieved by other research groups in the UK associated with the AGATA grants, notably Dr A Boston from the University of Liverpool and the nuclear physics team at the Daresbury laboratory. The work involved in developing the detectors used for AGATA and the processing of the signals has had impact on development of radiation detection methods in medical physics.
 
Description AGATA collaboration 
Organisation University of Liverpool
Country United Kingdom 
Sector Academic/University 
PI Contribution Work was carried out to simulate the performance of the AGATA demonstrator array for use with relativistic beams at GSI. Codes were developed and are currently stored at Daresbury laboratory under the supervision of Dr M Labiche.
Collaborator Contribution Collaborators from various countries involved with the AGATA spectrometer have contributed to the development work of the simulation codes. The spectrometer itself is funded by many different European countries, including the UK.
Impact Outcomes have been achieved by other research groups in the UK associated with the AGATA grants, notably Dr A Boston from the University of Liverpool and the nuclear physics team at the Daresbury laboratory. The work involved in developing the detectors used for AGATA and the processing of the signals has had impact on development of radiation detection methods in medical physics.
 
Description AGATA collaboration 
Organisation University of Manchester
Department Division of Infection, Immunity & Respiratory Medicine
Country United Kingdom 
Sector Academic/University 
PI Contribution Work was carried out to simulate the performance of the AGATA demonstrator array for use with relativistic beams at GSI. Codes were developed and are currently stored at Daresbury laboratory under the supervision of Dr M Labiche.
Collaborator Contribution Collaborators from various countries involved with the AGATA spectrometer have contributed to the development work of the simulation codes. The spectrometer itself is funded by many different European countries, including the UK.
Impact Outcomes have been achieved by other research groups in the UK associated with the AGATA grants, notably Dr A Boston from the University of Liverpool and the nuclear physics team at the Daresbury laboratory. The work involved in developing the detectors used for AGATA and the processing of the signals has had impact on development of radiation detection methods in medical physics.
 
Description AGATA collaboration 
Organisation University of Surrey
Department Section of Chronobiology
Country United Kingdom 
Sector Hospitals 
PI Contribution Work was carried out to simulate the performance of the AGATA demonstrator array for use with relativistic beams at GSI. Codes were developed and are currently stored at Daresbury laboratory under the supervision of Dr M Labiche.
Collaborator Contribution Collaborators from various countries involved with the AGATA spectrometer have contributed to the development work of the simulation codes. The spectrometer itself is funded by many different European countries, including the UK.
Impact Outcomes have been achieved by other research groups in the UK associated with the AGATA grants, notably Dr A Boston from the University of Liverpool and the nuclear physics team at the Daresbury laboratory. The work involved in developing the detectors used for AGATA and the processing of the signals has had impact on development of radiation detection methods in medical physics.