DUNE: Pre-Construction Phase

Lead Research Organisation: University of Warwick
Department Name: Physics

Abstract

The LBNF/DUNE project is a global flagship initiative in high-energy particle physics that addresses key questions on the origin and structure of the universe. The long-baseline neutrino facility (LBNF) will be the world's most intense high-energy neutrino beam. It will fire neutrinos 1300 km from Fermilab in Illinois towards the 70,000 ton DUNE detector in South Dakota in order to study neutrino oscillations. DUNE will be the first large-scale US-hosted
experiment run as a truly international project.

DUNE has broad support from the global particle physics community in the US and Europe and with growing interest in developing countries; DUNE currently is a scientific collaboration of over 950 collaborators from 30 nations, with overall UK leadership.

LBNF/DUNE will undertake a game-changing programme of neutrino physics. Its highest-level scientific goals target big questions in physics:
1) Discovery and measurements of neutrino CP violation. This subtle difference between neutrinos and antineutrinos could be responsible for the remaining matter in the universe;
2) Precision neutrino physics, including the definitive determination of the mass hierarchy;
3) Search for new physics beyond the current understanding of neutrino oscillations;
4) Observation of the electron neutrino burst from a galactic core-collapse supernova, providing a real-time probe of neutron star and possibly black hole formation;
5) Search for proton decay, expected in most models of new physics, but not yet observed.

The UK plans to make a major contribution to the construction of the massive DUNE far detector, through a partnership between UK universities, UK national laboratories and UK industry. In this proposal UK scientists are requesting resources to prototype the production processes for the construction of detector elements for this global scientific project.

Planned Impact

The Impact Statement is centrally submitted through the main submission.

Publications

10 25 50
 
Description HIgh-level reconstruction software was delivered to be used in analysing the first protoDUNE data and in preparation for the DUNE Far Detector (in particular to be used in maing the case for the DUNE detector TDR's). Specifically, the Warwick group delivered particle identification and energy reconstruction algorithms.
Exploitation Route These results are being further developed and added to in software development throughout the construction phase of the DUNE project.
Sectors Other

 
Description We have included some outcomes of this work in the annual Warwick Particle Physics Materclass event.
First Year Of Impact 2018
Sector Other
Impact Types Societal

 
Description Warwick Particle Physics Masterclass 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? Yes
Geographic Reach Regional
Primary Audience Schools
Results and Impact 50-60 Warwickshire school children attended and their teachers.

The feedback we receive from Masterclass days are always very positive i.e. we are clearly inspiring students with a scientific mind to pursue particle physics further.
Year(s) Of Engagement Activity 2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019
 
Description Warwick Particle Physics Masterclass 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? Yes
Geographic Reach Regional
Primary Audience Schools
Results and Impact 50-60 Warwickshire sixth form students and their teachers attended

Very positive feedback both directly and from questionaire forms
Year(s) Of Engagement Activity 2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019