DiRAC-3 Operations 2019-2022 - Cambridge
Lead Research Organisation:
University of Cambridge
Department Name: Institute of Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications

Aarts G.
(2019)
Spectral quantities in thermal QCD: A progress report from the FASTSUM collaboration
in Proceedings of Science

Abbott R
(2020)
Direct C P violation and the ? I = 1 / 2 rule in K ? p p decay from the standard model
in Physical Review D

Adamek J
(2020)
Numerical solutions to Einstein's equations in a shearing-dust universe: a code comparison
in Classical and Quantum Gravity

Agertz O
(2020)
EDGE: the mass-metallicity relation as a critical test of galaxy formation physics
in Monthly Notices of the Royal Astronomical Society

Ali A
(2023)
Star cluster formation and feedback in different environments of a Milky Way-like galaxy
in Monthly Notices of the Royal Astronomical Society

Allanson O
(2020)
Particle-in-Cell Experiments Examine Electron Diffusion by Whistler-Mode Waves: 2. Quasi-Linear and Nonlinear Dynamics
in Journal of Geophysical Research: Space Physics

Almaraz E
(2020)
Nonlinear structure formation in Bound Dark Energy
in Journal of Cosmology and Astroparticle Physics

Altamura E
(2023)
Galaxy cluster rotation revealed in the MACSIS simulations with the kinetic Sunyaev-Zeldovich effect
in Monthly Notices of the Royal Astronomical Society

Altamura E
(2023)
EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies
in Monthly Notices of the Royal Astronomical Society
Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation and particle physics theory have been made possible by the award. |
Exploitation Route | Many international collaborative projects are supported by the HPC resources provided by DiRAC. |
Sectors | Aerospace Defence and Marine Creative Economy Digital/Communication/Information Technologies (including Software) Education Healthcare |
URL | http://www.dirac.ac.uk |