UK Involvement in LSST: Phase B (QUB component)

Lead Research Organisation: Queen's University of Belfast
Department Name: Sch of Mathematics and Physics


We propose a continuation of the programme enabling UK participation in the Large Synoptic Survey Telescope (LSST), one of the most ambitious science projects planned for the next decade, and a key part of the astronomical landscape in the 2020s. LSST will have both a large collecting area and a wide field of view, giving it an etendue more than an order of magnitude larger than any current or planned facility. This will enable it to survey the whole visible sky every few days, leading to both a stacked sky survey of great depth, and the ability to find moving, variable, and transient objects. It will make advances over a large range of science, from Potentially Hazardous Asteroids, through the structure of the Milky Way, to the most distant quasars, and the nature of dark matter and dark energy - all areas where UK astronomers stand poised to make leading contributions.
LSST originated as a US project but is now transforming into an international one. This mostly requires operational support rather than capital construction, which makes engagement in LSST tremendous value for money. Rather than simply being an old-fashioned sky-atlas resource, the best LSST science will come through organised, massive, and systematic exploitation of its vast dataset in international teams. For UK astronomers to play a strong role it is therefore crucial to engage early and fully - in science working group planning, in development of specialised analysis software (the so-called "Level 3") and to have a framework to implement and run that Level 3 code.
The LSST:UK consortium aims to meet these goals through a four-phase programme. STFC committed £17.7M in response to our Phase A proposal, and we are now requesting funding for Phase B (April 2019 - March 2023). There are three elements to the lifetime costs of the full, four-phase programme:
1. To allow full data access, LSST requires a contribution to operations. These funds will only be required in later phases, but STFC has concluded a Memorandum of Agreement on behalf of the UK community and the required funds were committed in response to our Phase A proposal.
2. LSST requires that we make provision for the added cost of UK community access. Rather than hand over more cash, our proposal is to construct a UK Data Access Centre (DAC). This will enable us to fully engage immediately with LSST both scientifically and technically, will allow much more control for UK astronomers, and has a potential for industry involvement. We have been prototyping the UK DAC during Phase A, and now seek funds for its deployment, in readiness for LSST Commissioning. In accordance with the Science Board recommendation in our Phase A award, this is being conducted within the context of the development on coordinated computing infrastructure for STFC science being planned by the UKT0 consortium.
3. To maximise UK scientific return, we further propose a community development programme for Level 3 algorithms and data products, working closely in conjunction with the UK DAC. Phase B funding will build on the successes of our Phase A programme and on focus on further developing of Level 3 software tools through the use of LSST Commissioning data

Planned Impact

Support for UK involvement in LSST, through funding the LSST:UK Science Centre (LUSC), can generate societal and economic impact under the following five headings:

1. Enhancing the research capacity, knowledge and skills of enterprises working on "Big Data" issues being incubated within the Higgs Centre for Innovation.
The Phase B LUSC Data Access Centre workpackage is co-located on the Royal Observatory Edinburgh campus with the Higgs Centre for Innovation, which is being funded to improve interaction between academia and industry in Space and Big Data, and to enhance economic impact in those two domains. We shall exploit that co-location to ensure that Big Data innovations within the LSST project in the US filter through to UK SMEs and that the challenging requirements of LSST inspire the development of novel Big Data techniques and technologies within the UK, as has been the case in the US.

2. Increasing public engagement with research through Citizen Science initiatives.
The LSST:UK Consortium will develop a Citizen Science platform based on the pioneering Zooniverse project, which currently has more than one million users doing real science online. Computational advances between now and the start of LSST operations will enable Citizen Science activities that greatly exceed what is currently possible, and perhaps most exciting is the prospect of involving Citizen Scientists in the classification of the million or more transient alerts that LSST will generate per night, placing the public at the heart of LSST's pioneering exploration of time-domain astronomy.

3. Enhancing cultural enrichment and quality of life through education & outreach activities.
The LSST:UK Consortium institutions have a wealth of experience in education and public outreach (EPO) activities, from running Open Days and exhibitions to CPD courses for school teachers to Massive Online Open Courses (MOOCs). During Phase B we will develop an EPO programme, in conjunction with the very active LSST EPO team in the US.

4. Enhancing the research capacity, knowledge and skills of organisations through the employment of researchers with high-level expertise derived from working on LSST.
Over the 18-year lifetime of the LUSC programme, many students (e.g. from the STFC data-intensive science CDTs) and postdocs who have developed high-level expertise from working on LSST will pass from astronomy to the commercial sector, taking their valuable knowledge and skills with them. Particularly valuable will be the computational and statistical skills that will be readily applicable to the Big Data challenges prevalent in the public and private sector, and the expertise in thick CCDs developed through UK involvement in the LSST camera team.

5. Wealth creation, through the placing of construction contracts with UK companies.
The detector characterisation work started during LUSC Phase A, and proposed for continuation during Phase B, has included liaison with a UK company that has now signed a large contract to supply roughly half of the LSST detectors.


10 25 50
publication icon
McBrien O (2021) PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae in Monthly Notices of the Royal Astronomical Society

publication icon
McBrien Owen R. (2019) SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf in The Astrophysical Journal

Title Lasair: The Transient Alert Broker for LSST:UK 
Description Lasair provides a user-friendly interface to access public ZTF transient alerts. The alerts are transmitted by ZTF typically within 13 minutes of the exposure, in Avro/Kafka format. They are ingested into the Lasair database (on hardware in Edinburgh) within 20 minutes. 
Type Of Material Database/Collection of data 
Year Produced 2019 
Provided To Others? Yes  
Impact Lasair is the transient alerts broker for the LSST:UK collaboration. In preparation for LSST's data stream, Lasair ingests the ZTF public alert stream into a relational database, assimilates the alerts into objects, and produces lightcurves and reliable cross-matches to star and galaxy catalogs. Lasair can be viewed and queried through a web browser5 and we provide simple example streams of interesting objects, as well as access to a full SQL search engine. Registration to the website is optional, free, and open to all.