Advanced concepts and novel technologies for the study of the impact of ionising radiation on tissue

Lead Research Organisation: Imperial College London
Department Name: Dept of Physics

Abstract

Cancer is the second most common cause of death globally, accounting for 8.8 million deaths in 2015. It is estimated that radiotherapy is used in the treatment of approximately half of all cancer patients. In the UK, one new NHS proton-beam therapy facility has recently come online in Manchester and a second will soon be brought into operation in London. In addition, several new private proton-beam therapy facilities are being developed. The use of these new centres, and the research that will be carried out to enhance the efficacy of the treatments they deliver, will substantially increase demand. Worldwide interest in particle-beam therapy (PBT) is growing and a significant growth in demand in this technology is anticipated. By 2035, 26.9 million life-years in low- and middle-income countries could be saved if radiotherapy capacity could be scaled up. The investment required for this expansion will generate substantial economic gains.

Radiotherapy delivered using X-ray beams or radioactive sources is an established form of treatment widely exploited to treat cancer. Modern X-ray therapy machines allow the dose to be concentrated over the tumour volume. X-ray dose falls exponentially with depth so that the location of primary tumours in relation to heart, lungs, oesophagus and spine limits dose intensity in a significant proportion of cases. The proximity of healthy organs to important primary cancer sites implies a fundamental limit on the photon-dose intensities that may be delivered.

Proton and ion beams lose the bulk of their energy as they come to rest. The energy-loss distribution therefore has a pronounced 'Bragg peak' at the maximum range. Proton and ion beams overcome the fundamental limitation of X-ray therapy because, in comparison to photons, there is little (ions) or no (protons) dose deposited beyond the distal tumour edge. This saves a factor of 2-3 in integrated patient dose. In addition, as the Bragg peak occurs at the maximum range of the beam, treatment can be conformed to the tumour volume.

Protons with energies between 10MeV and 250MeV can be delivered using cyclotrons which can be obtained `off the shelf' from a number of suppliers. Today, cyclotrons are most commonly used for proton-beam therapy. Such machines are not able to deliver multiple ion species over the range of energies required for treatment. Synchrotrons are the second most common type of accelerator used for proton- and ion-beam therapy and are more flexible than cyclotrons in the range of beam energy that can be delivered. However, the footprint, complexity and maintenance requirements are all larger for synchrotrons than for cyclotrons, which increases the necessary investment and the running costs.

We propose to lay the technological foundations for the development of an automated, adaptive system required to deliver personalised proton- and ion-beam therapy by implementing a novel laser-driven hybrid accelerator system dedicated to the study of radiobiology. Over the two years of this programme we will:
* Deliver an outline CDR for the 'Laser-hybrid Accelerator for Radiobiological Applications', LhARA;
* Establish a test-bed for advanced technologies for radiobiology and clinical radiotherapy at the Clatterbridge Cancer Centre; and
* Create a broad, multi-disciplinary UK coalition, working within the international Biophysics Collaboration to place the UK in pole position to contribute to, and to benefit from, this exciting new biomedical science-and-innovation initiative.

Planned Impact

The long-term objective of the research programme is to transform the delivery of proton- and ion-beam therapy using a system that is:
* Automated and is capable of adjusting the dose delivered in real time based on measurements of the position of the patient, tumour, organs at risk, and the dose-deposition profile;
* Capable of delivering a range of ion species from protons to carbon ions over a wide variety of dose rates, up to and including those required for FLASH radiotherapy, in the same treatment session; and
* Has a footprint small enough that provision of the therapy can be distributed across the country.
The societal benefits of the substantial increase in access to advanced proton- and ion-beam therapy for effective cancer treatment that would result from the successful execution of this programme is clear.

To lay the foundations of the technological programme required to deliver the outcomes outlined above we have formed an multidisciplinary collaboration composed of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists. We propose to take a holisitic `system' approach to the delivery of the programme. This requires that various technological developments required to implement a full system are brought forward in parallel. The creation of a project team that has the diverse skill set and motivation to take the project forward to deliver the long-term goal is a clear priority. Further, the sustainable development of the programme from proof of concept to spin out will require staff with a breadth of experience across the disciplines. The series of meetings and networking events that will be scheduled as part of our programme will be used to further enhance the collaborative network which will deliver our overall aims and goals.

We will prove the principle of the laser-hybrid accelerator system within a facility dedicated to radiobiology research. This facility will enable further characterisation of the radiobiological effects of proton and ion beams, particularly at the molecular and cellular level, leading to a significant scientific impact. Specifically the collaborative team has expertise in examining the impact of ionising radiation on cell survival in different tumour models linked with effects on DNA damage and repair, which will be used to deliver the current proposal for increased scientific knowledge and gain. Overall, our proof-of-principle system has the potential to deliver a step up in clinical capability by improving the delivery and efficacy of particle-beam therapy for the benefit of cancer patients. As well as the societal impact that this will achieve, we will engage with industrial partners to place the UK in a unique position to generate substantial economic gains through the industrialisation of the novel techniques that this proposal will develop.

Organisations

Publications

10 25 50
 
Description Accelerator Science and Technology Centre, STFC Daresbury Laboratory 
Organisation Daresbury Laboratory
Department Accelerator Science
Country United Kingdom 
Sector Public 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Birmingham Cyclotron Facility, University of Birmingham 
Organisation University of Birmingham
Department Birmingham Cyclotron Facility
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description CNRS/Institut Curie 
Organisation Curie Institute Paris (Institut Curie)
Country France 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description CRUK Imperial Centre, Imperial College London 
Organisation Imperial College London
Department Cancer Research UK Imperial Centre
Country United Kingdom 
Sector Charity/Non Profit 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory 
Organisation Rutherford Appleton Laboratory
Department Central Laser Facility
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Centre for Cancer Research Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK 
Organisation Queen's University Belfast
Department Centre for Cancer Research and Cell Biology
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Centre for Plasma Physics, Department of Physics, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK 
Organisation Queen's University Belfast
Department Centre for Plasma Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Cockcroft Institute, Daresbury Laboratory, Sci-Tech Daresbury 
Organisation Sci-Tech Daresbury
Department Cockcroft Institute
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Corerain Technologies 
Organisation Corerain Technologies
Country China 
Sector Private 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Computing, Imperial College London 
Organisation Imperial College London
Department Department of Computing
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Science, University College London 
Organisation University College London
Department Department of Medical Physics and Biomedical Engineering
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Oncology, Imperial College Healthcare NHS Trust 
Organisation Imperial College Healthcare NHS Trust
Department Oncology
Country United Kingdom 
Sector Hospitals 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Physics, SUPA, University of Strathclyde 
Organisation University of Strathclyde
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Physics, University of Liverpool 
Organisation University of Liverpool
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Physics, University of Surrey 
Organisation University of Surrey
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Department of Surgery and Cancer, Imperial Academic Health Science Centre 
Organisation Imperial College London
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Division of Cancer Sciences, School of Medical Sciences, University of Manchester 
Organisation University of Manchester
Department Division of Cancer Sciences
Country United Kingdom 
Sector Hospitals 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Division of Cancer Sciences, The Christie Hospital, Manchester 
Organisation The Christie Hospital
Country United Kingdom 
Sector Hospitals 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description ISIS Neutron and Muon Source, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory 
Organisation Science and Technologies Facilities Council (STFC)
Department ISIS Neutron and Muon Source
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Imperial Patient and Public Involvement Group (IPPIG), Imperial College London 
Organisation Imperial College London
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Institute of Cancer Research, Sutton 
Organisation Institute of Cancer Research UK
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool 
Organisation University of Liverpool
Department Institute of Translational Medicine
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Ion Beam Centre, Advanced Technology Institute, University of Surrey 
Organisation University of Surrey
Department Ion Beam Centre
Country United Kingdom 
Sector Public 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description John Adams Institute for Accelerator Science, Imperial College London 
Organisation Imperial College London
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description John Adams Institute for Accelerator Science, Royal Holloway 
Organisation Royal Holloway, University of London
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description John Adams Institute for Accelerator Science, University of Oxford 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Leo Cancer Care, Broadview, Windmill Hill, Hailsham 
Organisation Leo Cancer Care
Country United Kingdom 
Sector Private 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Maxeler Technologies Limited 
Organisation Maxeler Technologies Inc
Department Maxeler Technologies
Country United Kingdom 
Sector Private 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description National Physical Laboratory, Teddington 
Organisation National Physical Laboratory
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Oxford Institute of Radiation Oncology 
Organisation University of Oxford
Department CRUK/MRC Oxford Institute for Radiation Oncology
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Particle Physics Department, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory 
Organisation Rutherford Appleton Laboratory
Department Particle Physics Department
Country United Kingdom 
Sector Public 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Physics Department, Lancaster University 
Organisation Lancaster University
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Positron Imaging Centre, University of Birmingham 
Organisation University of Birmingham
Department Positron Imaging Centre
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description Radiation Physics and Radiobiology Department, Imperial College Healthcare NHS Trust 
Organisation Imperial College Healthcare NHS Trust
Country United Kingdom 
Sector Hospitals 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description School of Physics and Astronomy, University of Birmingham 
Organisation University of Birmingham
Department School of Physics and Astronomy
Country United Kingdom 
Sector Academic/University 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description The Clatterbridge Cancer Centre 
Organisation The Clatterbridge Cancer Centre NHS Foundation Trust
Country United Kingdom 
Sector Public 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description The Laser-hybrid Accelerator for Radiobiological Applications (LhARA) collaboration 
Organisation Cascade Technologies
Country United Kingdom 
Sector Private 
PI Contribution In a series of proposals Corerain Technologies have promised in-kind support with a significant value.
Collaborator Contribution Support for proposals to EPSRC and STFC. The software house proposed to collaborate with us in the development of realtime processing and control for novel accelerator systems used in radiobiological research with application to particle beam therapy.
Impact No substantive outcomes have yet been secured.
Start Year 2020
 
Description University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham 
Organisation University Hospitals Birmingham NHS Foundation Trust
Country United Kingdom 
Sector Public 
PI Contribution Co-development of the conceptual design of a novel, laser-driven compact, accelerator system for biomedical applications.
Collaborator Contribution The vision of the LhARA collaboration is to develop a laser-driven proton- and opn-beam source capable of driving a step change in capability in the delivery of beams for biological research and in clinical practice. The laser pulse that initiates the production of ions at LhARA may be triggered at a repetition rate of up to 10\,Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological pathways that determine the biological response to ionising radiation with 10\,ns to 40\,ns long proton or ion bunches repeated at intervals as small as 100\,ms. The technologies chosen to capture, transport, and accelerate the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between 1\,cm and 3\,cm. Alternatively the beam can be focused to a spot with diameter of $\sim 1$\,mm. Th ambition of the collaboration is to demonstrate in operation technologies that have the potential to be developed to make ``best in class'' treatments available to the many by reducing the footprint of future particle-beam therapy systems. The laser-hybrid approach will allow radiobiological studies and eventually radiotherapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current ultra-high dose-rate ``FLASH'' regime.
Impact The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic physicists, biologists, engineers, and industrialists.
Start Year 2020
 
Description LhARA: world-leading radiobiology and novel technology development 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact News item on Imperial WWW site picked up as a piece in the Actionradiotherapy newsletter.
Year(s) Of Engagement Activity 2020
URL https://www.actionradiotherapy.org
 
Description LhARA: world-leading radiobiology and novel technology development 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact News item prepared by STFC. Imperial prepared a press release to go at the same time.
Year(s) Of Engagement Activity 2020
URL https://www.imperial.ac.uk/news/198093/lhara-world-leading-radiobiology-novel-technology-development...
 
Description Scientists plan new facility to transform UK cancer treatment 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Press release on LhARA generated by the STFC CLF Department.
Year(s) Of Engagement Activity 2020
URL https://www.clf.stfc.ac.uk/Pages/Scientists-plan-new-facility-to-transform-UK-cancer-treatment.aspx
 
Description Scientists plan new groundbreaking facility to transform UK cancer treatment 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Press release to coincide with release of pre-CDR for LhARA.
Year(s) Of Engagement Activity 2020
 
Description Scientists plan new groundbreaking facility to transform UK cancer treatment 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Actionradiotherapy news carried a story on LhARA following the news item in Sep/Oct 2020.
Year(s) Of Engagement Activity 2020
URL https://www.actionradiotherapy.org