Quantum Sensing for the Hidden Sector (QSHS)

Lead Research Organisation: University of Sheffield
Department Name: Physics and Astronomy

Abstract

Identifying the nature of the dark matter that dominates the mass distribution of galaxies and that plays a key role in our understanding of cosmology is a central unsolved problem of modern physics. Attention over the past 30+ years has focused on weakly interacting dark matter (WIMPs); however, a smaller but active community has been searching instead for 'hidden-sector' particles, including the 'QCD axion', using some of the world's most sensitive electronics. Axions were invoked to solve the so-called strong-CP problem, whereby the theory governing strong interactions is far more symmetric than our current theory, quantum chromodynamics, say it should be. But axions also turn out to be a natural candidate for the mysterious dark matter.
Theory suggests that axions should be detectable through the tiny signals they emit, about a millionth of an attowatt, while traversing a microwave cavity in a strong magnetic field. These signals are at the limit of what can be detected using even cryogenically-cooled ultra-low-noise electronics, but in the past few years, rapid progress in developing newer and more sensitive quantum sensors, fueled by parallel research in quantum computing and measurement, has placed the detection of axions within our reach. The UK has considerable expertise in these new quantum devices, and this proposal aims to apply these pivotal new measurement technologies to the search for hidden sector particles.
Our proposed search has two main parts. First, we have reached out to the world's most sensitive axion search experiment, ADMX, proposing to form a UK-USA collaboration. ADMX has welcomed this approach, and is keenly encouraging our participation. The UK will design and install a new axion detector inside the magnet and cryostat that ADMX already operate. Using this detector, we will search for axions in our Galaxy's dark matter halo in a previously unexplored mass range between 25 and 40 micro-electron volts. This range is well matched to indications from current theories of what the axion mass might be, although the possible range of masses is far larger, and so there is a great deal of ground to cover. The UK instrument will have at its heart one of our own superconducting quantum measurement technologies - a bolometric detector, a coherent parametric amplifier, a SQUID based amplifier, or a qubit based photon counting device. The technology to be used will be selected after extensive characterisation at participating institutes. The chosen technology will then be integrated into the ADMX instrument module, which will be characterised in a dedicated 10 mK cryostat at the University of Sheffield. This same cryostat will then double as the first target in the UK high-field low-temperature test facility that forms the second part of our proposal.
Second, an internationally competitive UK effort in hidden sector physics needs a world class UK facility incorporating an extremely high field magnet: several times larger than those used for MRI imaging in health care. Such a magnet is necessary for axion searches, and axions are arguably the best motivated hidden sector dark matter candidate. The bore of the magnet needs to be very cold for the quantum electronics to work, about 10mK. We will partner with a national laboratory to build and operate a UK facility meeting these specifications. Many hidden sector search experiments could be housed in this facility, but the first one will be our own low-temperature quantum-spectrometer.
Finally, to help maintain the UK's international prominence in fundamental physics, we must create a research community. Hidden sector physics is a rapidly growing subject, and the discovery of a whole new class of particles would drive particle physics into a new era, and quantum electronics into new applications and markets. We believe that the technology and techniques developed will have applications in areas as diverse as quantum computing, communications and radar.

Planned Impact

Impact is described more fully in the pathways to impact attachment.

1. Impact on Knowledge: Results to be disseminated through open access publications in high impact journals spanning topics from quantum engineering through fundamental particle physics. We will endevour to focus on journals such as Nature having wide distribution to academia, industry and the educated public. Major discoveries to be handled through University Press Offices after peer-review of science. Articles in profession-facing magazines such as IEEE Spectrum, Physics world. We will present at major national and international meetings such as the PATRAS workshop, IDM conference series, DESY workshops, APS meetings, and TAUP meetings. We will present the project UK National Quantum Technology Programme events organised by Hub partners nationally; these events are attended by diverse sectors beyond academia such as finance, security and defence. We will run an annual 2-day workshop where we will seek engagement from a wide community. Free exchange of staff and knowledge between the QSHS collaboration and our partners in ADMX will result in efficient bi-directional knowledge transfer between us and our US collaborators, and further opportunities for dissemination of knowledge to a wide audience beyond academia.
2. Impact on economy and society: The STFC/EPSRC delivery plan is designed to assist in the generation of an agile, creative, competitive UK economy. Our proposal is cross-disciplinary, combining knowledge across traditionally separated disciplines within physics and engineering. Our research will result in the training of many Ph.D. and postdoctoral staff with a wide ranging expertise that is in high demand. In bringing microwave quantum amplifiers, detectors, and photon counters with world-beating sensitivity and bandwidth to TRL5, we align with the STFC/EPSRC roadmap for quantum technologies, and develop new devices and techniques for growing commercial markets in quantum computation, measurement, cryptography and security. Our programme incorporates members of the UK National Quantum Technologies Programme, via consortium members from the National Physical Laboratory and the Oxford National Quantum Computing and Simulation Hub. NPL will facilitate economic and societal impact via the nearly complete Advanced Quantum Metrology Laboratory, bridging the gap to the relevant industry sectors. Our work has strong synergies with the Birmingham National Quantum Hub in Sensing and Timing (see attached letter of support). QSHS members have worked extensively in development of ultra-low-noise technology for diverse sectors such as space (Cambridge with ESA, UKSA, SRON, JPL, and Airbus) and healthcare (NPL with NHS England). Several QSHS members have been awarded patents in quantum measurement technologies. In summary, QSHS will work to project its research outputs beyond the academic community into industry and society, for the benefit of the UK economy.
3. Outreach impact
Fundamental science, and in particular the mystery of dark matter, are longstanding sources of public fascination. Quantum computing and quantum science in general are also subjects of intense public interest. See recent articles on axions in Forbes (19/11/19), and on quantum technologies in GQ Magazine (2/8/19). We will freely disseminate to the public the aims and fruits of our research, exploiting opportunities at IOP science festivals, open days, astronomy society meetings, and other public outreach events. We will engage with outreach activites of the DMUK UK dark matter community and the Quantum Hubs to reach the general public. We will in addition run our own collaboration web site.
4. Impact management
Coordination of these activities will be managed by staff to be selected from the collaboration during the opening phase of the project. The project steering committee will be asked to review and advise on impact activities as the project progresses.

Publications

10 25 50
 
Description Additional funding for QSHS
Amount £70,000 (GBP)
Funding ID ST/T006811/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 03/2023 
End 03/2023
 
Description QSHS Fast Oscilloscope for Time-domain Diagnostics
Amount £67,934 (GBP)
Funding ID ST/X/004988/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 11/2022 
End 03/2023
 
Description A5 QSHS project flyer 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Over 200 attendees at a National Exhibition, London, over 100 attendees at an outreach event where the flyer was handed out.
Year(s) Of Engagement Activity 2022
 
Description Cosenors house dark matter meeting 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact In-depth presentations given by invited speakers, and a session of short talks gave UK PhD students the opportunity to present their work.
Year(s) Of Engagement Activity 2021
URL https://conference.ippp.dur.ac.uk/event/1030/
 
Description Cosmology & Astrophysics meeting, Durham 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited talk titled QSHS project overview given at this workshop.
Year(s) Of Engagement Activity 2022
URL https://conference.ippp.dur.ac.uk/event/1101/
 
Description Dark Matter Day Celebration event 2022, Sheffield 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact Talk titled: The Cold, the Dark and the Invisible. Held at the University of Sheffield, Diamond building. Over 100 secondary school pupils attended with teachers, generated lots of questions and discussion afterwards.
Year(s) Of Engagement Activity 2022
 
Description Dark Matter UK meeting 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Talk on Overview of QSHS project.
Year(s) Of Engagement Activity 2022
URL https://indico.cern.ch./event/1189888/
 
Description LIGO Hanford conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact International conference sharing science.
Year(s) Of Engagement Activity 2022
 
Description Lancaster University Seminar 15th October 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Professional Practitioners
Results and Impact Online webinar on Quantum Sensors and the Hidden Sector.
Year(s) Of Engagement Activity 2021
URL https://portal.lancaster.ac.uk/intranet/events/condensed-matter-webinar-fc-2021-11-19-15-00
 
Description NY Creates 4th November 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Talk on behalf of the Quantum Sensors for the Hidden Sector collaboration.
Year(s) Of Engagement Activity 2021
URL https://ny-creates.org/wp-content/uploads/Daw_NY_CREATES_Nov_2021.pdf
 
Description Particle Physics Technology Advisory Panel meeting 2021 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Talks by experts in the field.
Year(s) Of Engagement Activity 2021
URL https://stfc.ukri.org/about-us/how-we-are-governed/advisory-boards/particle-physics-advisory-panel/
 
Description Photonex 2021 Conference, Glasgow 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Attended by industry, academics, students and technicians working in the field.
Year(s) Of Engagement Activity 2021
URL https://www.quantumcommshub.net/event/site/industry-government-media/2021/
 
Description Physics Beyond Colliders Annual Workshop 2022 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact The main goal of this annual workshop is to review the status of the PBC studies continued or launched after the European Particle Physics Strategy update, with a focus on the programmes under consideration for start of operation after the next LHC long shutdown LS3. The workshop is also opened to presentation of new ideas of potential interest for CERN, after submission along the guidelines given on the PBC Home Page.
Year(s) Of Engagement Activity 2022
URL https://indico.cern.ch/event/1137276/
 
Description QSHS website 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact A project website informs a wider audience on progress of the project, with news and updates, the collaborators involved, events and more.
Year(s) Of Engagement Activity 2022
URL https://www.qshs.org
 
Description QTFP Networking event, Warwick 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact A series of talks from the 7 QTFP projects, primarily a scientific event for those across all career stages from the STFC core sciences, EPSRC quantum sciences and technologies and the NQTP, to promote engagement between scientists and engineers from different types of expertise on quantum technologies and fundamental physics research.
Year(s) Of Engagement Activity 2022
 
Description Quantum Systems Theory meeting 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact A Quantum Systems Theory meeting, organised by the Quantum Systems for the Hidden Sector (QSHS) project, was an in-person event with a focus on the low temperature limit of hidden sector particle detection and quantum measurement issues, featured a set of introductory talks with round-table discussion.
Year(s) Of Engagement Activity 2022
 
Description Resonant feedback at ADMX, Seattle, January 2021 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Resonant feedback at ADMX - at Axions beyond Gen 2 workshop.
Year(s) Of Engagement Activity 2021
URL https://indico.fnal.gov/event/22434/timetable/?view=standard
 
Description SPIE Photonex 2022 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact To publicise the commercial possibilities of the QSHS group and the new facility and equipment at Sheffield.
Year(s) Of Engagement Activity 2022
URL https://spie.org/conferences-and-exhibitions/photonex?SSO=1
 
Description Snowmass Summer Study 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact organized by the Division of Particles and Fields (DPF) of the American Physical Society. Snowmass is an opportunity for the entire High Energy Physics community to come together to identify and document a vision for the future of particle physics in the U.S. and its international partners.
Year(s) Of Engagement Activity 2022
URL https://inspirehep.net/conferences/1803127
 
Description Spalding Gentleman's Society: Talk on dark matter to astronomy societies. 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Talk titled The Cold, the Dark and the Invisible.
Year(s) Of Engagement Activity 2022
 
Description Twitter page 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact A twitter page (@info_qshs) for the QSHS project was launched in March 2022.
Year(s) Of Engagement Activity 2022
 
Description Webinar - World Book Day 2022 'His Dark Materials' Trilogy, Particles and Parallel Worlds 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact 'His Dark Materials' trilogy by Philip Pullman has been popular and award winning children's literature since the release of the first book 'Northern Lights' in 1995. This book remains on the recommended reading list on the World Book Day website as of 2021. With a myriad of imaginative imagery, which reflects much of the 'real' world of physics and the answers that physicists seek about our universe, this event showcased the physics of Pullman's book trilogy, bringing his worlds to life through cutting edge physics research and coincided with World Book Day (3rd of March 2022). Designed for a general audience, the focus was young adults (16-18 years) which accounted for 30% of the audience. It achieved its aims which were to: a) Inspire our audiences with the fascinating world of physics b) Encourage new audiences to participate in physics/STEM events, c) Make links between the imaginative and creative skills used by physicists (just as artists and writers do), to seek answers and discover more about our universe and d) Provide an enjoyable and engaging experience for our audiences. This webinar has received excellent feedback.
Year(s) Of Engagement Activity 2022
URL https://player.sheffield.ac.uk/events/particles-and-parallel-worlds
 
Description Webinar talk titled 'Searching for Dark Matter Axions', Pabna University, Bangladesh, 17 May 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact International Physics Webinar shared widely across social media.
Year(s) Of Engagement Activity 2021
URL https://m.facebook.com/Physics_%E0%A6%86%E0%A6%A1%E0%A7%8D%E0%A6%A1%E0%A6%BE-110232450731013/videos/...