Newton STFC-NARIT: EXOhSPEC (Exoplanet high-resolution Spectrograph)

Lead Research Organisation: University of Hertfordshire
Department Name: School of Physics, Astronomy and Maths


The project is to realise a new kind of high-resolution spectrograph in routine operation. The concept relies on separating the complexity introduced by Earth from the requirements of the spectrometer unit itself. This separation enables a massive reduction in size and complexity on the spectrometer side and it is the natural complement to Adaptive Optics technologies being developed at NARIT and elsewhere. The concepts demonstrated with EXOhSPEC can be used to save tens of millions of pounds in instrumentation costs on the coming generation of extremely large telescopes but also be reproducible by University, public and amateur observatories and offer a competitive alternative to the purchase of large inefficient Fourier transform spectrometers in the wider marketplace. The key developments that we wish to demonstrate are, (1) a compact inexpensive design that can achieve the same performance as existing instruments in terms of wavelength coverage and spectral resolution and (2) bespoke active metrology/actuation of the system to achieve -or even surpass- the best wavelength calibration stability at a fraction of construction and operation costs and to produce a facility instrument. While the prototyping for this instrument is at the University of Hertfordshire, the facility instrument will be produced in Thailand but with the insight gained from operating a prototype versions on the 0.7m Astropark telescope at NARIT headquarters as well at that the Thai National Telescope. The Thai government has made a large investment in the National Astronomical Research Institute of Thailand and so they have the new laboratories in which to build the instrument as well as immediate access to telescopes. Current high-resolution spectrographs are large, expensive and sometimes difficult to maintain and limited to an elite handful of universities and laboratories around the globe. Moreover, because these instruments are so expensive, technology cycles and designs have evolved very little and do not take advantage of the great quality improvement and reduced costs of new materials and mass produced optics. One of the key findings of our prototyping is that the tapering of graded-index fibres is an efficient focal reduction of fibre optic signals not limited by geometrical optics. The optimisation of this by Thai specialists may prove to be a key spinoff of the project. The economic development and welfare of a country relies on key infrastructure and the capabilities of the workforce. In the field of physics and in particular astrophysics, the ability to design and make instruments and to measure and interpret the properties of the transitions in other planets, stars and galaxies is a key cornerstone to understand the properties of the Universe. High-resolution spectroscopy has for decades being a primary tool of astrophysics and a driving force in enabling new fundamental astrophysics. From the discovery of planets around nearby stars to the direct measurement of the size of the Universe. Worldwide, the most oversubscribed instruments on telescopes have long been the high-resolution spectrographs. Although Thailand has a large telescope and a number of smaller ones it does not have a high resolution spectrograph. The proposal is aimed at using Overseas Development Aid funding to develop Thai infrastructure and capabilities while at the same time deepening a collaboration which has been already been technically and scientifically productive and also have long-term benefit to the UK scientists and engineers involved in the project.

Planned Impact

The partners have established yet different strengths, and the outcome of this project is envisaged to be one that widens the impact of each partner but strengthens collaborations. Each has a strong track record of engagement with industry, other disciplines, the public and schools. Much of this capitalizes on infrastructure provided at the different institutions, which coordinates local programmes in training, enterprise and outreach. Students and research staff will be encouraged to participate in these activities, with emphasis on personal development but also as part of an appropriate engagement with non-scientists.

Knowledge Exchange
This project is developing new practice in high-resolution spectrographs. EXOhSPEC has many features common with areas outside astronomy such as medicine, bio-sciences, telecommunications, remote sensing and earth observation. Such developments may fall across a huge variety of commercial interests and all the UK research councils. The team would consider the licensing and commercialisation of IP, and we might seek out forums that would provide opportunities for researchers to meet with corporate and other non-astrophysics-based research sectors. We already have close contacts with fibre optic and camera manufacturers. We have good access to such events, particularly through the South East Physics Network in the UK and OPTICON within Europe. We have a well-established working relationship with NARIT who are very actively investing and developing all aspects of Science and Technology in Northern Thailand and beyond.

Career Development
Researcher development is an important focus of the institutions training programmes. This project is highly collaborative and a fast-moving area and suitable liaison with industry will be for short-term delivery of specifications but longer-term development of new capabilities. We have active collaborations at all levels with groups very interested in this work, in particular, through our membership of the OPTICON photonics package (and also some involvement with the Adaptive Optics package). Further afield we have close contacts with Sydney (Bland-Hawthorn), Penn State (Larry Ramsey) and ANU (Roger Haynes) and will be in communication with these groups during the project (exchanges of RAs and PhD students are possible though not specifically envisaged).

Public Engagement and Outreach
Our project combines novel optical devices with a potential for discussing exoplanets - one of the most popular areas for public engagement. At the University of Hertfordshire, we regularly host groups of teachers and students for visits to our labs, and our spectrograph and its science applications and are seeking to expand this locally through the appointment of an Ogden outreach fellow but also with NARIT who are particularly organised with regard to public engagement. The combination of current capabilities and exploiting our recent experiences of announcing Proxima b, c and Barnards star and future potential of exploiting the NARIT development chronograph means that we are equipped to support the intense interest of local, national and international media and the potential that brings. Outreach and public engagement are core elements of our activities and we would expect that all researchers would be involved in open days and evenings, school visits and talks to local astronomical societies. A version of the instrument together with input from Bath - fibres, Durham - adaptive optics, Heriot Watt - fibres and potentially also a laser comb would make for a particularly exciting Royal Society exhibition and we could consider a proposal for such an exhibition. Our immediate focus will be the routine operation of a version of EXOhSPEC at the 0.7m astropark telescope alongside the (soft) opening of their new planetarium and science centre during 2020. This provides the potential to be part of one of the major tourist attractions in Northern Thailand.


10 25 50
publication icon
Errmann R (2020) HiFLEx-A Highly Flexible Package to Reduce Cross-dispersed Echelle Spectra in Publications of the Astronomical Society of the Pacific

publication icon
Jones H (2021) A Small Actively Controlled High-resolution Spectrograph Based on Off-the-shelf Components in Publications of the Astronomical Society of the Pacific