A proposal for the programme of the John Adams Institute for Accelerator Science 2021-2025
Lead Research Organisation:
University of Oxford
Department Name: Oxford Physics
Abstract
The John Adams Institute for Accelerator Science (JAI) is a centre of excellence for advanced accelerator science and technology. We perform R&D and training, provide expertise, and promote accelerator applications in science and society. The JAI currently comprises 20 faculty, 23 staff, and 38 PhD students from the Physics Departments of Oxford University (UOXF), Royal Holloway University of London (RHUL), and Imperial College London (ICL). An additional 33 staff from the UK's national laboratories and CERN are affiliated with our research and teaching programmes. We have six guiding principles:
a) Develop, support and engagement of accelerator science facilities and R&D programmes of strategic importance for the UK;
b) Develop worldwide collaborations that enhance the capabilities available to us;
c) Develop novel acceleration and compact light source techniques and their applications;
d) Deliver a world leading training programme to develop the next generation of leaders in the field;
e) Communicate developments in the field to the public and decision makers;
f) Strengthen the links among the partner universities to deliver a programme that is greater than the sum of its parts.
For the period 2021-2025, we have focused on research areas that have the greatest benefit to national priorities:
Low-emittance, high-brightness electron beams, including next-generation electron-positron colliders (ILC, CLIC), the Diamond Light Source (DLS) and its upgrade, and a future UK FEL.
High-energy/high-intensity hadron beams, including current and future energy-frontier proton colliders (LHC, HL-LHC, FCC), and ISIS and its upgrade.
Advanced acceleration techniques, including laser- and beam-driven plasma-wakefield acceleration.
Particle-beam therapy applications using electron, proton and ion beams.
Through this programme we are supporting the UK's accelerator strategy by taking lead roles in both our national and overseas facilities including: DLS, ISIS and CLF at STFC/RAL, CLARA at STFC/DL, LHC, HL-LHC, CLIC, FCC and AWAKE at CERN, FLASHforward at DESY, and ATF/ATF2 at KEK.
These themes position us optimally to support our core goals of supporting major national and international accelerator developments; motivating our researchers and giving them skills in state-of-the-art technologies; and being able to transfer our knowledge to major collaborative developments and to industry.
a) Develop, support and engagement of accelerator science facilities and R&D programmes of strategic importance for the UK;
b) Develop worldwide collaborations that enhance the capabilities available to us;
c) Develop novel acceleration and compact light source techniques and their applications;
d) Deliver a world leading training programme to develop the next generation of leaders in the field;
e) Communicate developments in the field to the public and decision makers;
f) Strengthen the links among the partner universities to deliver a programme that is greater than the sum of its parts.
For the period 2021-2025, we have focused on research areas that have the greatest benefit to national priorities:
Low-emittance, high-brightness electron beams, including next-generation electron-positron colliders (ILC, CLIC), the Diamond Light Source (DLS) and its upgrade, and a future UK FEL.
High-energy/high-intensity hadron beams, including current and future energy-frontier proton colliders (LHC, HL-LHC, FCC), and ISIS and its upgrade.
Advanced acceleration techniques, including laser- and beam-driven plasma-wakefield acceleration.
Particle-beam therapy applications using electron, proton and ion beams.
Through this programme we are supporting the UK's accelerator strategy by taking lead roles in both our national and overseas facilities including: DLS, ISIS and CLF at STFC/RAL, CLARA at STFC/DL, LHC, HL-LHC, CLIC, FCC and AWAKE at CERN, FLASHforward at DESY, and ATF/ATF2 at KEK.
These themes position us optimally to support our core goals of supporting major national and international accelerator developments; motivating our researchers and giving them skills in state-of-the-art technologies; and being able to transfer our knowledge to major collaborative developments and to industry.
Organisations
Publications

Alejo A
(2022)
Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels
in Physical Review Accelerators and Beams

Batsch F
(2021)
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma.
in Physical review letters

Boella E
(2021)
Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition.
in Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

Chappell J
(2021)
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
in Physical Review Accelerators and Beams

Howard S
(2023)
Hyperspectral compressive wavefront sensing
in High Power Laser Science and Engineering

Jakobsson O
(2021)
Gev-Scale Accelerators Driven by Plasma-Modulated Pulses from Kilohertz Lasers.
in Physical review letters

Knetsch A
(2021)
Stable witness-beam formation in a beam-driven plasma cathode
in Physical Review Accelerators and Beams

Lee J
(2023)
Toward more robust ignition of inertial fusion targets
in Physics of Plasmas

Morales Guzmán P
(2021)
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
in Physical Review Accelerators and Beams

Norreys PA
(2021)
Preparations for a European R&D roadmap for an inertial fusion demo reactor.
in Philosophical transactions. Series A, Mathematical, physical, and engineering sciences