Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
Lead Research Organisation:
Northumbria University
Department Name: Fac of Engineering and Environment
Abstract
Our proposal addresses key science behind space weather. The energetic electrons in the radiation belts that surround the Earth are controlled in part by interactions with a wide range of electromagnetic waves. We have a useful theoretical description of the strength of these wave-particle interactions, but it was only designed for waves that do not vary much in time. Real-world observations indicate that the waves and plasma conditions are highly variable and so we look to run physics-based numerical experiments to identify how we should use our knowledge of wave-particle interactions to better model the behaviour of the radiation belt. The conditions for the numerical experiments will be constrained by observations from NASA's state-of-the-art Van Allen Probes. The combination of numerical simulation and observations promises to shed further light on the physical processes that control the amount of high-energy electrons trapped in Earth's outer radiation belt.
Organisations
Publications
Abraham J
(2022)
Thermal Energy Budget of Electrons in the Inner Heliosphere: Parker Solar Probe Observations
in The Astrophysical Journal
Allanson O
(2022)
Weak Turbulence and Quasilinear Diffusion for Relativistic Wave-Particle Interactions Via a Markov Approach
in Frontiers in Astronomy and Space Sciences
Allanson O
(2021)
Electron Diffusion and Advection During Nonlinear Interactions With Whistler-Mode Waves
in Journal of Geophysical Research: Space Physics
Bentley S
(2021)
The magnetospheric interactions of predicted ULF wave power
Bloch T
(2021)
Constraining the Location of the Outer Boundary of Earth's Outer Radiation Belt
in Earth and Space Science