Experimental Particle Physics at the University of Edinburgh

Lead Research Organisation: University of Edinburgh
Department Name: Sch of Physics and Astronomy

Abstract

The Edinburgh Experimental Particle Physics group is currently working in three different running experiments and we are also working on several future projects.

The ATLAS experiment at the Large Hadron Collider (LHC): ATLAS is one of two detectors able to study a wide variety of particles created from the collision of protons at the highest energies ever created, and it addresses fundamental questions. The most well known is that of the origin of mass. The beautiful symmetry which underlies our understanding of particle interactions inherently demands that all particles are massless. This cannot be the case, and the elegant solution put forward is now known as the Higgs mechanism. The discovery of the Higgs boson has verified this, and now we must measure its properties in great detail. Another area addressed by ATLAS is the search for new heavy particles such as new heavy Higgs like particles or supersymmetric particles, which are predicted in models trying to address shortcomings of the Standard Model (SM), such as why there is dark matter.

The LHCb experiment at the LHC. Prior to the 1960s, it had been thought that matter and anti-matter would behave in the same way. However, it was discovered that this symmetry was violated, and that matter does not behave in an identical way to anti-matter. This is embodied in the phenomenon of CP violation and is essential to the understanding of the early universe. Shortly after the big bang there were equal amounts of matter and anti-matter. During expansion and cooling, matter and anti-matter would have annihilated into photons to leave a universe full of radiation, but no stars and galaxies. It was shown in 1967 by Sakarov that if three conditions, including CP violation, were met, then it would be possible for a small imbalance of matter over anti-matter to accrue, which would be sufficient to explain the existence of the universe. LHCb measures differences (CP violation) in behaviour of particles and antiparticle with at least one b or anti-b quark and searches for very rare decays of these particles, which could be affected by heavy unobserved particles.

The LUX-ZEPLIN experiment, which is the world's most sensitive apparatus searching for dark matter. It is well known that some 27% of the Universe is comprised of Dark Matter - that is matter of some form which does not interact in a way that produces radiation, or other easy to observe signatures. There are many theoretical candidates and resolution of this mystery must include the direct detection of our own galactic dark matter. We lead the collaboration's efforts to detect particularly well-motivated possibilities including axions and dark phonons.

We have grown our neutrino physics activities in the recent years. One of the most interesting facts of nature is that there are only three species of neutrinos, which until recently were thought to be massless. It is important to measure precisely the "mixing" between the species and to search for CP violation in neutrinos. We have also joined the MicroBooNE and SBND experiments, which will search for new, sterile, neutrinos which interact only via gravity but not with any of the fundamental interactions of the SM.

Publications

10 25 50