NOC Marine Systems Modelling
Lead Research Organisation:
NATIONAL OCEANOGRAPHY CENTRE
Department Name: UNLISTED
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
- NATIONAL OCEANOGRAPHY CENTRE (Lead Research Organisation)
- National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) (Collaboration)
- Meteorological Office UK (Collaboration)
- Mercator Océan (Collaboration)
- Euro-Mediterranean Center on Climate Change (CMCC) (Collaboration)
People |
ORCID iD |
Jason Holt (Principal Investigator) |
Publications
Vaittinada Ayar P
(2022)
Contrasting projections of the ENSO-driven CO 2 flux variability in the equatorial Pacific under high-warming scenario
in Earth System Dynamics
Lévy M
(2012)
Contribution of tropical cyclones to the air-sea CO 2 flux: A global view
in Global Biogeochemical Cycles
Howard T
(2019)
Contributions to 21st century projections of extreme sea-level change around the UK
in Environmental Research Communications
Hopkins J
(2021)
Control of a phytoplankton bloom by wind-driven vertical mixing and light availability
in Limnology and Oceanography
Popova E
(2010)
Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
in Biogeosciences
Wakelin S
(2020)
Controls on near-bed oxygen concentration on the Northwest European Continental Shelf under a potential future climate scenario
in Progress in Oceanography
Felgate S
(2021)
Conversion of Forest to Agriculture Increases Colored Dissolved Organic Matter in a Subtropical Catchment and Adjacent Coastal Environment
in Journal of Geophysical Research: Biogeosciences
Scannell B
(2017)
Correcting Surface Wave Bias in Structure Function Estimates of Turbulent Kinetic Energy Dissipation Rate
in Journal of Atmospheric and Oceanic Technology
Hawkins E
(2011)
Correction to "Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport" CORRECTION
in Geophysical Research Letters
Byrne D
(2021)
Creation of a global tide analysis dataset: Application of NEMO and an offline objective analysis scheme
in Journal of Operational Oceanography
Merryfield W
(2020)
Current and Emerging Developments in Subseasonal to Decadal Prediction
in Bulletin of the American Meteorological Society
Persechino A
(2012)
Decadal-timescale changes of the Atlantic overturning circulation and climate in a coupled climate model with a hybrid-coordinate ocean component
in Climate Dynamics
Durgadoo J
(2011)
Decay of eddies at the South-West Indian Ridge
in South African Journal of Science
Liubartseva S
(2016)
Decision support system for emergency management of oil spill accidents in the Mediterranean Sea
in Natural Hazards and Earth System Sciences
Josey S
(2023)
Declining winter heat loss threatens continuing ocean convection at a Mediterranean dense water formation site
in Environmental Research Letters
Martin A
(2010)
Dedication to Dr. Martin Angel and Prof. Mike Fasham FRS
in Deep Sea Research Part II: Topical Studies in Oceanography
Brearley J
(2014)
Deep boundary current disintegration in Drake Passage
in Geophysical Research Letters
Koenigk T
(2021)
Deep mixed ocean volume in the Labrador Sea in HighResMIP models
in Climate Dynamics
Roquet F
(2015)
Defining a Simplified Yet "Realistic" Equation of State for Seawater
in Journal of Physical Oceanography
Challenor P
(2011)
Designing a Computer Experiment That Involves Switches
in Journal of Statistical Theory and Practice
Byrne D
(2022)
Designing a Large Scale Autonomous Observing Network: A Set Theory Approach
in Frontiers in Marine Science
Knights AM
(2024)
Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning.
in Journal of environmental management
Zheng P
(2023)
Development of a fully coupled wind stress-wave-ocean coastal model system
in Coastal Engineering Journal
Getzlaff J
(2012)
Diagnostics of diapycnal diffusion in z-level ocean models. Part II: 3-Dimensional OGCM
in Ocean Modelling
Getzlaff J
(2010)
Diagnostics of diapycnal diffusivity in z-level ocean models part I: 1-Dimensional case studies
in Ocean Modelling
Jouanno J
(2016)
Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean
in Ocean Science
Tye A
(2022)
Dissolved inorganic carbon export from rivers of Great Britain: Spatial distribution and potential catchment-scale controls
in Journal of Hydrology
Rulent J
(2021)
Distribution of coastal high water level during extreme events around the UK and Irish coasts
in Natural Hazards and Earth System Sciences
Bricheno L
(2015)
Distribution of natural disturbance due to wave and tidal bed currents around the UK
in Continental Shelf Research
Brasier M
(2017)
Distributional Patterns of Polychaetes Across the West Antarctic Based on DNA Barcoding and Particle Tracking Analyses
in Frontiers in Marine Science
Qu Y
(2022)
Drivers for seasonal variability in sea level around the China seas
in Global and Planetary Change
Hudson P
(2024)
Drivers of Laptev Sea interannual variability in salinity and temperature
in Ocean Science
Jacobs Z
(2022)
Drivers of productivity on the Agulhas Bank and the importance for marine ecosystems
in Deep Sea Research Part II: Topical Studies in Oceanography
Skliris N
(2022)
Drivers of rainfall trends in and around Mainland Southeast Asia
in Frontiers in Climate
Bulgin C
(2023)
Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective
in Environmental Research Letters
Sévellec F
(2017)
Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application to the design of optimal monitoring systems
in Climate Dynamics
Anderson T
(2010)
Dysfunctionality in ecosystem models: An underrated pitfall?
in Progress in Oceanography
Jebri F
(2022)
Earth Observation and Machine Learning Reveal the Dynamics of Productive Upwelling Regimes on the Agulhas Bank
in Frontiers in Marine Science
Smith DM
(2015)
Earth's energy imbalance since 1960 in observations and CMIP5 models.
in Geophysical research letters
Ward B
(2018)
EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model
in Geoscientific Model Development
Sadykova D
(2020)
Ecological costs of climate change on marine predator-prey population distributions by 2050.
in Ecology and evolution
Prellezo R
(2024)
Economic trade-offs of harvesting the ocean twilight zone: An ecosystem services approach
in Ecosystem Services
Jin M
(2016)
Ecosystem model intercomparison of under-ice and total primary production in the A rctic O cean
in Journal of Geophysical Research: Oceans
Nurser A
(2013)
Eddy length scales and the Rossby radius in the Arctic Ocean
Nurser A
(2012)
Eddy Subduction and the Vertical Transport Streamfunction
in Journal of Physical Oceanography
Description | The mission of the Marine Systems Modelling group is to advance our understanding of the marine environment and improve our ability to predict the Earth System on timescales of days to centuries. We work at national, regional and global scales from the coasts to the open ocean and specifically consider the dynamic links between these scales. We achieve this mission through the development, application, assessment and analysis of world-leading ocean models. We aim to exploit this understanding and capability to address societally relevant issues and deliver clear and traceable impacts. |
Exploitation Route | a wide range of scientific, innovation and policy relevant application involving ocean models. |
Sectors | Aerospace Defence and Marine Agriculture Food and Drink Digital/Communication/Information Technologies (including Software) Environment Leisure Activities including Sports Recreation and Tourism Transport |
URL | http://noc.ac.uk/science/research-areas/marine-systems-modelling |
Description | The findings of this award have been used as follows:- • Climate change impacts Man-made climate change has been estimated to cost the UK economy 5-20% of Gross Domestic Product (GDP)1 amounting to £80-320 billion for 2011 GDP2. The National Oceanography Centre (NOC) is providing impartial, independent, world-leading expertise in developing the international scientific consensus that informs the Intergovernmental Panel on Climate Change (IPCC) series of Assessment Reports3. NOC provides authoritative oceanographic scientific evidence to underpin the assessments, necessary as climate change has enormous economic and societal implications. NOC research is a significant contributor to the international delivery of evidence on ocean circulation, global temperature, sea level and climate. In response to research evidence presented by the IPCC the UK parliament passed the world's first long-term legally binding framework to tackle the dangers of climate change (The Climate Change Act 20086). The act requires Government to set carbon budgets, which are limits on greenhouse gas emissions in the UK for consecutive five-year periods. In addition to IPCC assessments, NOC data and expertise, including sea-level from PSMSL (Permanent Service for Mean Sea Level), inform studies of impacts of climate change on both national and international levels [e.g. UK Marine Climate Change Impacts Partnership (MCCIP), UK Climate Impacts Programme (UKCIP), UK Foresight Flood and Coastal Defence Review, Charting Progress and Charting Progress 2 • Sustainability and health of UK National seas NOC was pivotal in providing advice and evidence feeding into UK assessments on "clean, healthy, safe, productive and biologically diverse oceans and seas". These underpin legislation aimed at achieving this vision, specifically the EU Marine Strategy Framework Directive. In the UK this took the form of the report: "Charting Progress 2 (CP2): The State of UK Seas", and the on-going Evidence Groups. Alongside this, the Marine Climate Change Impacts Partnership (MCCIP) and UKCP09 (UK Climate Projections 09) provide assessments of potential future conditions and substantially contributing to the on-going UKCP18 assessment. NOC is the leading UK organisation for providing this evidence, advice, information and future projections for physical oceanography. Its scientists were lead / co-authors for CP2 "Ocean Processes" chapter, most MCCIP science reviews, and the UKCP09 Marine Section. • Improved seasonal forecasting Improved seasonal forecasting of UK winter weather conditions months in advance is key to our ability to manage our environment and resources responsibly, and to be resilient to hazards. For instance, environmental change will affect our infrastructure (through storms, flooding and coastal erosion - particularly damaging for the South-west coastline and the Somerset levels during the winter of 2013/14), food, water and energy resources (changes to rainfall and wind) and the health of our population (the incidence of influenza is related to winter temperatures). Improved seasonal forecasting is therefore of immense societal importance for the UK population, and to our Government for planning and policy development. Many sectors of the UK economy (transport, agriculture, health, etc) need accurate forecasts of weather conditions many months in advance (seasonal forecasts) for planning purposes. These forecasts are provided to UK Government by operational systems run at the Met Office. Through a major strategic partnership, the Joint Weather and Climate Research Programme, a coordinated programme of effort has been established between NOC and the Met Office to provide the best possible ocean models to Met Office forecasting systems. New higher resolution ocean models have in this way been included in the latest seasonal forecasting systems and have led to a dramatic improvement in the skill of winter forecasts for the UK, with widespread benefits to the UK. NOC also works with Met Office in the UK Environmental Prediction Project to develop a national scale land-sea-wave-atmosphere couple system with the aim of improving forecasting of environmental hazards such as coastal flooding and extreme rain fall events. NOC plays a pivotal role in the development and assessment of marine forecasts and reanalysing products delivered by the Copernicus Marine Environmental Monitoring Service. These provide key environmental information for a range of downstream industrial, operational and policy stakeholders. |
Sector | Aerospace, Defence and Marine,Agriculture, Food and Drink,Energy,Environment,Healthcare,Leisure Activities, including Sports, Recreation and Tourism,Government, Democracy and Justice,Transport |
Impact Types | Societal Economic Policy & public services |
Description | Climate Change Impacts |
Geographic Reach | National |
Policy Influence Type | Citation in other policy documents |
Impact | Man-made climate change has been estimated to cost the UK economy 5-20% of Gross Domestic Product (GDP)1 amounting to £80-320 billion for 2011 GDP2. The National Oceanography Centre (NOC) is providing impartial, independent, world-leading expertise in developing the international scientific consensus that informs the Intergovernmental Panel on Climate Change (IPCC) series of Assessment Reports3. NOC provides authoritative oceanographic scientific evidence to underpin the assessments, necessary as climate change has enormous economic and societal implications. NOC research is a significant contributor to the international delivery of evidence on ocean circulation, global temperature, sea level and climate. In response to research evidence presented by the IPCC the UK parliament passed the world's first long-term legally binding framework to tackle the dangers of climate change (The Climate Change Act 20086). The act requires Government to set carbon budgets, which are limits on greenhouse gas emissions in the UK for consecutive five-year periods. In addition to IPCC assessments, NOC data and expertise, including sea-level from PSMSL (Permanent Service for Mean Sea Level), inform studies of impacts of climate change on both national and international levels [e.g. UK Marine Climate Change Impacts Partnership (MCCIP), UK Climate Impacts Programme (UKCIP), UK Foresight Flood and Coastal Defence Review, Charting Progress and Charting Progress 2. |
Description | Improved Seasonal Forecasting |
Geographic Reach | Europe |
Policy Influence Type | Participation in a guidance/advisory committee |
Impact | Improved seasonal forecasting of UK winter weather conditions months in advance is key to our ability to manage our environment and resources responsibly, and to be resilient to hazards. For instance, environmental change will affect our infrastructure (through storms, flooding and coastal erosion - particularly damaging for the South-west coastline and the Somerset levels during the winter of 2013/14), food, water and energy resources (changes to rainfall and wind) and the health of our population (the incidence of influenza is related to winter temperatures). Improved seasonal forecasting is therefore of immense societal importance for the UK population, and to our Government for planning and policy development. Many sectors of the UK economy (transport, agriculture, health, etc) need accurate forecasts of weather conditions many months in advance (seasonal forecasts) for planning purposes. These forecasts are provided to UK Government by operational systems run at the Met Office. Through a major strategic partnership, the Joint Weather and Climate Research Programme, a coordinated programme of effort has been established between NOC and the Met Office to provide the best possible ocean models to Met Office forecasting systems. New higher resolution ocean models have in this way been included in the latest seasonal forecasting systems and have led to a dramatic improvement in the skill of winter forecasts for the UK, with widespread benefits to the UK. |
Description | Sustainability and health of UK national seas |
Geographic Reach | Asia |
Policy Influence Type | Citation in other policy documents |
Impact | NOC was pivotal in providing advice and evidence feeding into UK assessments on "clean, healthy, safe, productive and biologically diverse oceans and seas". These underpin legislation aimed at achieving this vision, specifically the EU Marine Strategy Framework Directive. In the UK this took the form of the report: "Charting Progress 2 (CP2): The State of UK Seas", and the on-going Evidence Groups. Alongside this, the Marine Climate Change Impacts Partnership (MCCIP) and UKCP09 (UK Climate Projections 09) provide assessments of potential future conditions. NOC is the leading UK organisation for providing this evidence, advice, information and future projections for physical oceanography. Its scientists were lead / co-authors for CP2 "Ocean Processes" chapter, most MCCIP science reviews, and the UKCP09 Marine Section. |
Description | Sources, impacts and solutions for plastics in South East Asia coastal environments |
Amount | £53,772 (GBP) |
Funding ID | NE/V009591/1 |
Organisation | Natural Environment Research Council |
Sector | Public |
Country | United Kingdom |
Start | 11/2020 |
End | 11/2024 |
Description | NEMO Consortium |
Organisation | Euro-Mediterranean Center on Climate Change (CMCC) |
Country | Italy |
Sector | Charity/Non Profit |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | Mercator Océan |
Country | France |
Sector | Private |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | Meteorological Office UK |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) |
Country | France |
Sector | Academic/University |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NOC and Met Office Collaboration |
Organisation | Meteorological Office UK |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Under the Joint Weather and Climate Research Programme (JWCRP) between NERC and the Met Office, we have forged a strong strategic partnership with the Met Office. This takes the form of the Joint Marine Modelling Project (JMMP; formerly JOMP; the Joint Ocean Modelling Programme and JCOMP; the Joint Coastal Ocean Modelling Programme). JMMP comprises staff from both NOC (from the Marine Systems Modelling group) and the Met Office and enables the best possible versions of the NEMO global and coastal-ocean models to be taken up into predictive systems at the Met Office (for ocean forecasting, coupled weather forecasting, seasonal prediction, decadal prediction, and climate and earth system modelling). Successive versions of NEMO are developed internationally on a regular cycle and have a number of new options. The benefit of these options are assessed both individually and in various combinations through undertaking decadal timescale simulations on MONSooN, a supercomputer facility shared between NERC and the Met Office, and identical in architecture to the main Met Office supercomputer. Once the optimal combination of options has been ascertained, the NEMO model can then be rapidly and easily taken up into the predictive systems at the Met Office. The cycle is repeated approximately every 1-2 years. The shelf seas activities, specifically support the models run operationally in the shelf sea forecasting and reanalysis system at the Met Office and delivered by the European Copernicus Marine Environmental Monitoring Service. Alongside JMMP, the National Partnership for Ocean Prediction (formally known as the National Centre for Ocean Forecasting) aims to develop and promote the application of world-leading marine products and services to stakeholders, with a focus on national and public benefit. This is achieved firstly through the integration of models, observations and scientific understanding to produce the best information and advice about the marine environment, with rigorous quality assurance and traceability; and secondly through engaging with stakeholders to understand their requirements and to maximise the beneficial use of marine products and services. |
Collaborator Contribution | Under the Joint Weather and Climate Research Programme (JWCRP) between NERC and the Met Office, we have forged a strong strategic partnership with the Met Office. This takes the form of the Joint Marine Modelling Project (JMMP; formerly JOMP; the Joint Ocean Modelling Programme and JCOMP; the Joint Coastal Ocean Modelling Programme). JMMP comprises staff from both NOC (from the Marine Systems Modelling group) and the Met Office and enables the best possible versions of the NEMO global and coastal-ocean models to be taken up into predictive systems at the Met Office (for ocean forecasting, coupled weather forecasting, seasonal prediction, decadal prediction, and climate and earth system modelling). Successive versions of NEMO are developed internationally on a regular cycle and have a number of new options. The benefit of these options are assessed both individually and in various combinations through undertaking decadal timescale simulations on MONSooN, a supercomputer facility shared between NERC and the Met Office, and identical in architecture to the main Met Office supercomputer. Once the optimal combination of options has been ascertained, the NEMO model can then be rapidly and easily taken up into the predictive systems at the Met Office. The cycle is repeated approximately every 1-2 years. The shelf seas activities, specifically support the models run operationally in the shelf sea forecasting and reanalysis system at the Met Office and delivered by the European Copernicus Marine Environmental Monitoring Service. Alongside JMMP, the National Partnership for Ocean Prediction (formally known as the National Centre for Ocean Forecasting) aims to develop and promote the application of world-leading marine products and services to stakeholders, with a focus on national and public benefit. This is achieved firstly through the integration of models, observations and scientific understanding to produce the best information and advice about the marine environment, with rigorous quality assurance and traceability; and secondly through engaging with stakeholders to understand their requirements and to maximise the beneficial use of marine products and services. |
Impact | NEMO model configurations. NW European Shelf Operational Copernicus service. |
Start Year | 2008 |
Title | The Marine Model Optimization Testbed (MarMOT) 1.1 software http://noc.ac.uk/project/marmot/marmot-11-software |
Description | Overview document available at: http://nora.nerc.ac.uk/504004/ Types of beneficiary include: Research Council/Institute;Public Research Organisation |
Type Of Technology | Software |
URL | http://noc.ac.uk/project/marmot/marmot-11-software |
Title | Vertical Discretization In NEMO |
Description | |
Type Of Technology | Software |