Can we predict the performance of a pulsed column

Lead Research Organisation: University of Leeds
Department Name: Chemical and Process Engineering


Research is underway in SCAPE, to develop a better understanding of conventional solvent extraction technology for nuclear fuel recycling. Specifically, CFD modelling is being carried out to predict the performance of a Pulsed Sieve-Plate Extraction Column (PSEC), one of the most commonly used liquid-liquid extraction technologies.

A critical parameter which affects the performance is the size of droplets produced when the contents of the column are pulsed/agitated. Experimental data is needed to help validate the models. Initial work on measuring droplet dimensions of an organic phase within a pulsed sieve-plate pulsed column has shown a large reliance on the pulsation parameters with droplet formation and hence mass transfer.

This project aims to developed methods of direct measurement of droplet formation of an organic phase within a PSEC in order to generate data which will be used to verify a model. Using a small scale PSEC (4 plates and 60mm internal diameter) and techniques such as laser optometry with high speed video to record the droplet size; determination of a population balance of droplets will be investigated. This will be linked to an instant mass transfer rate, by studying the operating conditions during extraction of metals such as Cu and Uranium.

Whilst existing CFD modelling work is investigating the internal hydrodynamics of a PSEC; to predict the overall performance a CFD-based design optimisation methodology is required. So a second part of this project is to use the experimental data to a produce a functioning dynamic model, which will not just model the change in flow due to pulsation, but also calculate mass transfer. This model will be based on design equations that are available in the literature, data from the existing CFD models and experimental data from the research above to identify optimal operating and design parameters for PSEC systems.


10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/R513258/1 30/09/2018 29/09/2023
2109068 Studentship EP/R513258/1 30/09/2018 29/06/2022 Alexander Scott Fells