Novel Liquid Crystal Droplets for Detecting Toxins.

Lead Research Organisation: University of Leeds
Department Name: School of Food Science and Nutrition


Combating antimicrobial resistance is vital in all areas of medical practice. At present many of the diagnostic methods used do not give the desired instantaneous feedback and are relatively expensive to use.

Our approach is to make phospholipid (biomembrane-like) coated liquid crystal droplets. Liquid crystals are ordered fluids and their orientation depends on the surface they are in contact with. The liquid crystal droplet will have distinctive optical properties that depend on the surface orientation. Hence, a change in the phospholipid layer will influence the liquid crystal droplet.

This project will use microfluidics to produce coated liquid crystal droplets of a uniform size, with control over the alignment of the liquid crystal at the phopholipid interface. We are especially interested in understanding the relationship between the liquid crystal physical properties (elastic constants, polarity etc.) and the interaction with the lipid layer. This will allow us to fully understand some of the complex geometries that occur in the droplets as well as to optimize the materials that might be used in a device. Our exciting multidisciplinary approach uses liquid crystals in a new way and enhances our fundamental scientific understanding of liquid crystals, biomembranes and biomolecule interactions. Ultimately, we have the potential to provide a new way of diagnosing significant healthcare problems

Planned Impact

SOFI CDT impact is driven by:

1. PEOPLE. The SOFI CDT will have a significant economic and (responsible) societal impact, the greatest of which, will be the students themselves, who will graduate having benefited from a broad and deep scientific education as well as an innovative and enterprise-focussed training program. The training programme is built directly on the UK-wide industrial gap analysis and co-developed by industrial partners. As such it inherently captures the training elements required by the industrial SOFI sector. The network of partnerships will facilitate impact through their engagement in the extensive training programme and through the co-supervision of PhD projects. Cohort training in Responsible Innovation will be embedded from the outset, ensuring students carry a responsible and forward-thinking attitude to research and innovation throughout their careers. The students trained in this programme will learn the skill sets required of the next generation of enterprise leaders in UK plc and pass this to future employers.

2. PROJECTS. The PhD research projects themselves are impact pathways. Whether at the "Industrial Doctorate" end of the spectrum or focussed on fundamental science, all projects have an industrial co-supervisor. Industrial support for every project maximises the possibility of economic impact and the production of IP. Additional opportunities for impact arises from the connectivity and critical mass of the CDT - typically a company may be involved in chains of projects ("serial PhDs" in the main proposal) building from fundamental to applied, overlapping and running throughout the lifetime of the CDT. A key aspect of societal impact is public understanding of science and in addition to reporting project results via the SOFI website, newsletter, partnership meetings and annual CDT conference, students will have be trained in audience-targeted communication and will take part in extensive public communication and outreach activities to publicise their research. The CDT will also drive research impact by carrying our research into the barriers to impact. A research theme with PhD projects jointly supervised by Durham Business School and industrial partners will explore barriers to innovation and commercialisation of SOFI sector research.

3. PARTNERSHIPS. Pathways to impact involve collaborative research with industrial beneficaries large (multinational) and small (SMEs) alike. Managing and nuturing partnerships to maximise impact is a key function of CDT management and our Industrial Advisory Board will advise on potential research impact. Engagement with (in some cases competing) multinationals builds on long expertise and requires sensitive management of IP and confidentiality. Engagement with SMEs often presents different challenges and a detailed strategy to maximise CDT engagement with the SME community has been described in the case for support. SME representation (Ryan, Epigem) on our International Advisory Board will ensure SME engagement and impact remains a core CDT objective.

4. PLATFORMS. The CDT itself constitutes a platform greater than the sum of its parts. The industrial consortium has requested that in addition to other roles they form an "industrial club" along the lines of that run by the UK Polymer IRC. The impact potential of a CDT based industrial club arises from: (i) the opportunity to connect to academics whose expertise fits urgent as well as long-term research needs, (ii) the opportunity to exchange generic best practice in research and innovation and (iii) a forum to catalyse new industry-industry partnerships.

5. PRODUCTS. It is patently true that fundamental areas of science are identified by partner companies, driven by the knowledge that markets emerge once technological challenges have been overcome. It is an expectation that discoveries in fundamental science made within the CDT will drive new product markets and SOFI-sector spin outs.


10 25 50