DiRAC-3 Operations 2019-2022 - Edinburgh
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications
Reid J
(2020)
Coronal energy release by MHD avalanches: Heating mechanisms
in Astronomy & Astrophysics
Hildebrandt H
(2020)
KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data
in Astronomy & Astrophysics
Blondin S
(2022)
StaNdaRT: a repository of standardised test models and outputs for supernova radiative transfer
in Astronomy & Astrophysics
Hutchinson A
(2023)
Impact of corotation on gradual solar energetic particle event intensity profiles
in Astronomy & Astrophysics
Sifón C
(2024)
The history and mass content of cluster galaxies in the EAGLE simulation
in Astronomy & Astrophysics
Drummond B
(2020)
Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model
in Astronomy & Astrophysics
Fenton A
(2024)
The 3D structure of disc-instability protoplanets
in Astronomy & Astrophysics
Nowak M
(2024)
The orbit of HD 142527 B is too compact to explain many of the disc features
in Astronomy & Astrophysics
Upadhyay A
(2021)
Star formation histories of Coma cluster galaxies matched to simulated orbits hint at quenching around first pericenter
in Astronomy & Astrophysics
Montargès M
(2023)
The VLT/SPHERE view of the ATOMIUM cool evolved star sample I. Overview: Sample characterization through polarization analysis
in Astronomy & Astrophysics
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057645 |
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057644 |
