DiRAC-3 Operations 2019-2022 - Edinburgh

Lead Research Organisation: University of Edinburgh
Department Name: Sch of Physics and Astronomy

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Planned Impact

The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.

Publications

10 25 50
publication icon
Heyl J (2023) Data quality and autism: Issues and potential impacts in International Journal of Medical Informatics

publication icon
Stevenson P (2020) Internuclear potentials from the Sky3D code in IOP SciNotes

publication icon
Almaraz E (2020) Nonlinear structure formation in Bound Dark Energy in Journal of Cosmology and Astroparticle Physics

publication icon
Givans J (2022) Non-linearities in the Lyman-a forest and in its cross-correlation with dark matter halos in Journal of Cosmology and Astroparticle Physics

publication icon
Hernández-Aguayo C (2022) Fast full N-body simulations of generic modified gravity: derivative coupling models in Journal of Cosmology and Astroparticle Physics

publication icon
Becker C (2020) Proca-stinated cosmology. Part I. A N -body code for the vector Galileon in Journal of Cosmology and Astroparticle Physics

publication icon
Poole-McKenzie R (2020) Informing dark matter direct detection limits with the ARTEMIS simulations in Journal of Cosmology and Astroparticle Physics

publication icon
De Jong E (2023) Spinning primordial black holes formed during a matter-dominated era in Journal of Cosmology and Astroparticle Physics

publication icon
Nazari Z (2021) Oscillon collapse to black holes in Journal of Cosmology and Astroparticle Physics