DiRAC-2: Recurrent Costs for Complexity@DiRAC Cluster at University of Leicester
Lead Research Organisation:
University of Leicester
Department Name: Physics and Astronomy
Abstract
This award is for the recurrent costs of Complexity@DiRAC cluster at the the University of Leicester. It will cover electricity costs, support staff costs of the cluster which is part of the DiRAC-2 national facility.
Planned Impact
The pathways to impact for the project are as agreed at the DiRAC PMB meeting on 21 November 2011 and subsequently reported on in the annual reports of the facility.
The high-performance computing applications supported by DiRAC typically involve new algorithms and implementations optimised for high energy efficiency which impose demands on computer architectures that the computing industry has found useful for hardware and system software design and testing.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
Boyle (University of Edinburgh) co-designed the Blue-Gene/Q compute chip with IBM. This is now deployed in 1.3 Pflop/s systems at Edinburgh and Daresbury and 15 other sites in the world, including the world's largest system at Lawrence Livermore Labs. This is the greenest HPC architecture in the world and offers a route to cheap affordable petascale and exascale computing that will have profound effects on Energy, Health, Environment and Security sectors.
Boyle and IBM have 4 US patents pending resulting from the Blue Gene/Q chip set design project with IBM. Boyle was a co-author of IBM's Gauss Award winning paper at the International Supercomputing conference and has co-authored IEEE and IBM Journal papers on the Blue Gene/Q architecture with IBM.
Falle (Leeds University) partially developed the MG code on DiRAC. This has been used in the National Grid COOLTRANS project to model dispersion of CO2 from high pressure pipelines carrying CO2 for carbon sequestration.
At UCL, a virtual quantum laboratory suite has been created by the UCL spinout firm, QUANTEMOL. It has application in industry, energy, health and environmental monitoring.
Calleja (Cambridge University) is using DiRAC to work with Xyratex, the UK's leading disk manufacturer, to develop the fastest storage arrays in the world.
The COSMOS consortium (Shellard) has had a long-standing collaboration with SGI (since 1997) and with Intel (since 2003) which has allowed access to leading-edge shared-memory technologies, inlcuding the world's first UV2000 in 2012, which was also the first SMP system enabled with Intel Phi (KnightsCorner) processors. Adaptive Computing are using the COSMOS@DiRAC platform to develop a single-image version of their MOAB HPC Suite.
The high-performance computing applications supported by DiRAC typically involve new algorithms and implementations optimised for high energy efficiency which impose demands on computer architectures that the computing industry has found useful for hardware and system software design and testing.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
Boyle (University of Edinburgh) co-designed the Blue-Gene/Q compute chip with IBM. This is now deployed in 1.3 Pflop/s systems at Edinburgh and Daresbury and 15 other sites in the world, including the world's largest system at Lawrence Livermore Labs. This is the greenest HPC architecture in the world and offers a route to cheap affordable petascale and exascale computing that will have profound effects on Energy, Health, Environment and Security sectors.
Boyle and IBM have 4 US patents pending resulting from the Blue Gene/Q chip set design project with IBM. Boyle was a co-author of IBM's Gauss Award winning paper at the International Supercomputing conference and has co-authored IEEE and IBM Journal papers on the Blue Gene/Q architecture with IBM.
Falle (Leeds University) partially developed the MG code on DiRAC. This has been used in the National Grid COOLTRANS project to model dispersion of CO2 from high pressure pipelines carrying CO2 for carbon sequestration.
At UCL, a virtual quantum laboratory suite has been created by the UCL spinout firm, QUANTEMOL. It has application in industry, energy, health and environmental monitoring.
Calleja (Cambridge University) is using DiRAC to work with Xyratex, the UK's leading disk manufacturer, to develop the fastest storage arrays in the world.
The COSMOS consortium (Shellard) has had a long-standing collaboration with SGI (since 1997) and with Intel (since 2003) which has allowed access to leading-edge shared-memory technologies, inlcuding the world's first UV2000 in 2012, which was also the first SMP system enabled with Intel Phi (KnightsCorner) processors. Adaptive Computing are using the COSMOS@DiRAC platform to develop a single-image version of their MOAB HPC Suite.
Publications
Goffrey T
(2017)
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
in Astronomy & Astrophysics
Howson T
(2019)
Magnetohydrodynamic waves in braided magnetic fields
in Astronomy & Astrophysics
Green S
(2019)
Thermal emission from bow shocks I. 2D hydrodynamic models of the Bubble Nebula
in Astronomy & Astrophysics
Lega E
(2021)
Migration of Jupiter-mass planets in low-viscosity discs
in Astronomy & Astrophysics
Pagano P
(2020)
Hydrogen non-equilibrium ionisation effects in coronal mass ejections
in Astronomy & Astrophysics
Drummond B
(2020)
Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model
in Astronomy & Astrophysics
Khouri T
(2013)
The wind of W Hydrae as seen by Herschel I. The CO envelope?
in Astronomy & Astrophysics
Pagano P
(2019)
MHD simulations of the in situ generation of kink and sausage waves in the solar corona by collision of dense plasma clumps
in Astronomy & Astrophysics
Pratt J
(2020)
Comparison of 2D and 3D compressible convection in a pre-main sequence star
in Astronomy & Astrophysics
Rouillard A
(2020)
Models and data analysis tools for the Solar Orbiter mission
in Astronomy & Astrophysics
Geroux C
(2016)
Multi-dimensional structure of accreting young stars
in Astronomy & Astrophysics
Howson T
(2021)
Magnetic reconnection and the Kelvin-Helmholtz instability in the solar corona
in Astronomy & Astrophysics
Ratnasingam R
(2023)
Internal gravity waves in massive stars II. Frequency analysis across stellar mass
in Astronomy & Astrophysics
Baraffe I
(2022)
Local heating due to convective overshooting and the solar modelling problem
in Astronomy & Astrophysics
Laitinen T
(2023)
Solar energetic particle event onsets at different heliolongitudes: The effect of turbulence in Parker spiral geometry
in Astronomy & Astrophysics
Gronow S
(2021)
Double detonations of sub-M Ch CO white dwarfs: variations in Type Ia supernovae due to different core and He shell masses
in Astronomy & Astrophysics
Lach F
(2022)
Models of pulsationally assisted gravitationally confined detonations with different ignition conditions
in Astronomy & Astrophysics
Reissl S
(2020)
Synthetic observations of spiral arm tracers of a simulated Milky Way analog
in Astronomy & Astrophysics
MacLachlan J
(2015)
Photoionising feedback and the star formation rates in galaxies
in Astronomy & Astrophysics
Soler J
(2020)
The history of dynamics and stellar feedback revealed by the H I filamentary structure in the disk of the Milky Way
in Astronomy & Astrophysics
Hildebrandt H
(2020)
KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data
in Astronomy & Astrophysics
Rosito M
(2019)
The mass-size plane of EAGLE galaxies
in Astronomy & Astrophysics
Justtanont K
(2015)
Herschel observations of extreme OH/IR stars The isotopic ratios of oxygen as a sign-post for the stellar mass??
in Astronomy & Astrophysics
Lega E
(2022)
Migration of Jupiter mass planets in discs with laminar accretion flows
in Astronomy & Astrophysics
Liu Y
(2019)
Ring structure in the MWC 480 disk revealed by ALMA
in Astronomy & Astrophysics
| Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation have been made possible by the award. |
| Exploitation Route | Many international collaborative projects are supported by the HPC resources provided by DiRAC. |
| Sectors | Aerospace Defence and Marine Creative Economy Digital/Communication/Information Technologies (including Software) Education Manufacturing including Industrial Biotechology Retail Other |
| URL | http://www.dirac.ac.uk |
| Description | Significant co-design project with Hewlett-Packard Enterprise, including partnership in the HPE/Arm/Suse Catalyst UK programme. |
| First Year Of Impact | 2017 |
| Sector | Digital/Communication/Information Technologies (including Software) |
| Impact Types | Societal |
| Description | DiRAC 2.5x Project Office 2017-2020 |
| Amount | £300,000 (GBP) |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 02/2018 |
| End | 03/2020 |
| Title | Citation analysys and Impact |
| Description | Use of IT to determineacademic impact of eInfrastructure |
| Type Of Material | Improvements to research infrastructure |
| Year Produced | 2017 |
| Provided To Others? | Yes |
| Impact | Understood emerging trends in DiRAC Science and helped decide the scale and type of IT investments and direct us to develop new technologies |
| URL | http://www.dirac.ac.uk |
| Title | Runaway gas accretion and ALMA observations |
| Description | VizieR online Data Catalogue associated with article published in journal Monthly Notices of the Royal Astronomical Society with title ' ALMA observations require slower Core Accretion runaway growth.' (bibcode: 2019MNRAS.488L..12N) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/488/L12 |
| Description | Co-design project with Hewlett Packard Enterprise |
| Organisation | Hewlett Packard Enterprise (HPE) |
| Country | United Kingdom |
| Sector | Private |
| PI Contribution | Technical support and operations costs for running the hardware. Research workflows to test the system performance, and investment of academic time and software engineering time to optimise code for new hardware. Project will explore suitability of hardware for DiRAC workflows and provide feedback to HPE. |
| Collaborator Contribution | In-kind provision of research computing hardware. Value is commercially confidential. |
| Impact | As this collaboration is about to commence, there are no outcomes to report at this point. |
| Start Year | 2018 |
| Description | DiRAC |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Department | Distributed Research Utilising Advanced Computing |
| Country | United Kingdom |
| Sector | Academic/University |
| PI Contribution | I am the PI for two research grants for the procurement and running of the Complexity@DiRAC High Performance Computing cluster at the University of Leicester. This cluster is now in active operation as a national HPC facility. |
| Collaborator Contribution | DiRAC is the facility which provides HPC resources for the theoretical astrophysics and particle physics communities within STFC. |
| Impact | The establishment and running of a new HPC cluster at the University of Leicester as part of the DiRAC national facility. |
| Start Year | 2011 |
| Description | Nuclei from Lattice QCD |
| Organisation | RIKEN |
| Department | RIKEN-Nishina Center for Accelerator-Based Science |
| Country | Japan |
| Sector | Public |
| PI Contribution | Surrey performed ab initio studies of LQCD-derived nuclear forces |
| Collaborator Contribution | Work by Prof. Hatsuda and collaborators at the iTHEMS and Quantum Hadron Physics Laboratory to provide nuclear forces derived from LQCD |
| Impact | Phys. Rev. C 97, 021303(R) |
| Start Year | 2015 |
| Description | STFC Centres for Doctoral Training in Data Intensive Science |
| Organisation | University of Leicester |
| Department | STFC DiRAC Complexity Cluster (HPC Facility Leicester) |
| Country | United Kingdom |
| Sector | Academic/University |
| PI Contribution | Support for STFC Centres for Doctoral Training (CDT) in Data Intensive Science - DiRAC is a partner in five of the eight of the newly established STFC CDTs, and is actively engaged with them in developing industrial partnerships. DiRAC is also offering placements to CDT students interested in Research Software Engineering roles. |
| Collaborator Contribution | Students to work on interesting technical problems for DiRAC |
| Impact | This is the first year |
| Start Year | 2017 |