The DiRAC-2.5y Facility
Lead Research Organisation:
University of Leicester
Department Name: Physics and Astronomy
Abstract
Physicists across the astronomy, nuclear and particle physics communities are focussed
on understanding how the Universe works at a very fundamental level. The distance scales
with which they work vary by 50 orders of magnitude from the smallest distances probed
by experiments at the Large Hadron Collider, deep within the atomic
nucleus, to the largest scale galaxy clusters discovered out in space. The Science challenges,
however, are linked through questions such as: How did the Universe begin and how is it evolving?
and What are the fundamental constituents and fabric of the Universe and how do they interact?
Progress requires new astronomical observations and experimental data but also
new theoretical insights. Theoretical understanding comes increasingly from large-scale
computations that allow us to confront the consequences of our theories very accurately
with the data or allow us to interrogate the data in detail to extract information that has
impact on our theories. These computations test the fastest computers that we have and
push the boundaries of technology in this sector. They also provide an excellent
environment for training students in state-of-the-art techniques for code optimisation and
data mining and visualisation.
The DiRAC2 HPC facility has been operating since 2012, providing computing resources for theoretical research
in all areas of particle physics, astronomy, cosmology and nuclear physics supported by STFC. It is a highly productive
facility, generating 200-250 papers annually in international, peer-reviewed journals. However, the DiRAC facility risks becoming uncompetitive as it has remained static in terms of overall capability since 2012. The DiRAC-2.5x investment in 2017/18 mitigated the risk of hardware failures, by replacing our oldest hardware components. However, as the factor 5 oversubscription of the most recent RAC call demonstrated, the science programme in 2019/20 and beyond requires a significant uplift in DiRAC's compute capability. The main purpose of the requested funding for the DiRAC2.5y project is to provide a factor 2 increase in computing across all DiRAC services to enable the facility to remain competitive during 2019/20 in anticipation of future funding for DiRAC-3.
DiRAC2.5y builds on the success of the DiRAC HPC facility and will provide the resources needed to support cutting-edge research
during 2019 in all areas of science supported by STFC. While the funding is required to remain competitive, the science programme will continue to be world-leading. Examples of the projects which will benefit from this investment include:
(i) lattice quantum chromodynamics (QCD) calculations of the properties of fundamental particles from first principles;
(ii) improving the potential of experiments at CERN's Large Hadron Collider for discovery of new physics by increasing the accuracy of theoretical predictions for rare processes involving the fundamental constituents of matter known as quarks;
(iii) simulations of the merger of pairs of black holes amnwhich generate gravitational waves such as those recently discovered by the LIGO consortium;
(iv) the most realistic simulations to date of the formation and evolution of galaxies in the Universe;
(v) the accretion of gas onto supermassive black holes, the most efficient means of extracting energy from matter and the engine which drives galaxy evolution;
(vi) new models of our own Milky Way galaxy calibrated using new data from the European Space Agency's GAIA satellite;
(vii) detailed simulations of the interior of the sun and of planetary interiors;
(viii) the formation of stars in clusters - for the first time it will be possible to follow the formation of massive stars.
on understanding how the Universe works at a very fundamental level. The distance scales
with which they work vary by 50 orders of magnitude from the smallest distances probed
by experiments at the Large Hadron Collider, deep within the atomic
nucleus, to the largest scale galaxy clusters discovered out in space. The Science challenges,
however, are linked through questions such as: How did the Universe begin and how is it evolving?
and What are the fundamental constituents and fabric of the Universe and how do they interact?
Progress requires new astronomical observations and experimental data but also
new theoretical insights. Theoretical understanding comes increasingly from large-scale
computations that allow us to confront the consequences of our theories very accurately
with the data or allow us to interrogate the data in detail to extract information that has
impact on our theories. These computations test the fastest computers that we have and
push the boundaries of technology in this sector. They also provide an excellent
environment for training students in state-of-the-art techniques for code optimisation and
data mining and visualisation.
The DiRAC2 HPC facility has been operating since 2012, providing computing resources for theoretical research
in all areas of particle physics, astronomy, cosmology and nuclear physics supported by STFC. It is a highly productive
facility, generating 200-250 papers annually in international, peer-reviewed journals. However, the DiRAC facility risks becoming uncompetitive as it has remained static in terms of overall capability since 2012. The DiRAC-2.5x investment in 2017/18 mitigated the risk of hardware failures, by replacing our oldest hardware components. However, as the factor 5 oversubscription of the most recent RAC call demonstrated, the science programme in 2019/20 and beyond requires a significant uplift in DiRAC's compute capability. The main purpose of the requested funding for the DiRAC2.5y project is to provide a factor 2 increase in computing across all DiRAC services to enable the facility to remain competitive during 2019/20 in anticipation of future funding for DiRAC-3.
DiRAC2.5y builds on the success of the DiRAC HPC facility and will provide the resources needed to support cutting-edge research
during 2019 in all areas of science supported by STFC. While the funding is required to remain competitive, the science programme will continue to be world-leading. Examples of the projects which will benefit from this investment include:
(i) lattice quantum chromodynamics (QCD) calculations of the properties of fundamental particles from first principles;
(ii) improving the potential of experiments at CERN's Large Hadron Collider for discovery of new physics by increasing the accuracy of theoretical predictions for rare processes involving the fundamental constituents of matter known as quarks;
(iii) simulations of the merger of pairs of black holes amnwhich generate gravitational waves such as those recently discovered by the LIGO consortium;
(iv) the most realistic simulations to date of the formation and evolution of galaxies in the Universe;
(v) the accretion of gas onto supermassive black holes, the most efficient means of extracting energy from matter and the engine which drives galaxy evolution;
(vi) new models of our own Milky Way galaxy calibrated using new data from the European Space Agency's GAIA satellite;
(vii) detailed simulations of the interior of the sun and of planetary interiors;
(viii) the formation of stars in clusters - for the first time it will be possible to follow the formation of massive stars.
Planned Impact
The anticipated impact of the DiRAC2.5y HPC facility aligns closely with the recently published UK Industrial Strategy. As such, many of our key impacts will be driven by our engagements with industry. Each service provider for DiRAC2.5y has a local industrial strategy to deliver increased levels of industrial returns over the next three years.
The "Pathways to impact" document which is attached to this proposal describes the overall industrial strategy for the DiRAC facility, including our strategic goals and key performance indicators.
The "Pathways to impact" document which is attached to this proposal describes the overall industrial strategy for the DiRAC facility, including our strategic goals and key performance indicators.
Organisations
Publications
Rosotti G
(2020)
Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary-disc interaction and a vertical temperature gradient
in Monthly Notices of the Royal Astronomical Society
BeraldoĀ eĀ Silva L
(2020)
Geometric properties of galactic discs with clumpy episodes
in Monthly Notices of the Royal Astronomical Society
Genina A
(2019)
The distinct stellar metallicity populations of simulated Local Group dwarfs
in Monthly Notices of the Royal Astronomical Society
McNally C
(2019)
Migrating super-Earths in low-viscosity discs: unveiling the roles of feedback, vortices, and laminar accretion flows
in Monthly Notices of the Royal Astronomical Society
Paillas E
(2019)
The Santiago-Harvard-Edinburgh-Durham void comparison II: unveiling the Vainshtein screening using weak lensing
in Monthly Notices of the Royal Astronomical Society
Hough R
(2023)
SIMBA - C : an updated chemical enrichment model for galactic chemical evolution in the SIMBA simulation
in Monthly Notices of the Royal Astronomical Society
Stafford S
(2020)
The bahamas project: effects of a running scalar spectral index on large-scale structure
in Monthly Notices of the Royal Astronomical Society
DeGraf C
(2020)
Cosmological simulations of massive black hole seeds: predictions for next-generation electromagnetic and gravitational wave observations
in Monthly Notices of the Royal Astronomical Society
Goldsmith K
(2018)
A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution
in Monthly Notices of the Royal Astronomical Society
Martin G
(2019)
The formation and evolution of low-surface-brightness galaxies
in Monthly Notices of the Royal Astronomical Society
Digby R
(2019)
The star formation histories of dwarf galaxies in Local Group cosmological simulations
in Monthly Notices of the Royal Astronomical Society
Barber C
(2019)
Calibrated, cosmological hydrodynamical simulations with variable IMFs III: spatially resolved properties and evolution
in Monthly Notices of the Royal Astronomical Society
Kimm T
(2019)
Understanding the escape of LyC and Lya photons from turbulent clouds
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2020)
Sensitivity analysis of a galaxy formation model
in Monthly Notices of the Royal Astronomical Society
Jennings F
(2023)
Halo scaling relations and hydrostatic mass bias in the simba simulation from realistic mock X-ray catalogues
in Monthly Notices of the Royal Astronomical Society
Vincenzo F
(2019)
Zoom-in cosmological hydrodynamical simulation of a star-forming barred, spiral galaxy at redshift z = 2
in Monthly Notices of the Royal Astronomical Society
Agertz O
(2020)
EDGE: the mass-metallicity relation as a critical test of galaxy formation physics
in Monthly Notices of the Royal Astronomical Society
Garzilli A
(2020)
Measuring the temperature and profiles of Ly a absorbers
in Monthly Notices of the Royal Astronomical Society
Goyal J
(2019)
Fully scalable forward model grid of exoplanet transmission spectra
in Monthly Notices of the Royal Astronomical Society
Wareing C
(2019)
Sheets, filaments, and clumps - high-resolution simulations of how the thermal instability can form molecular clouds
in Monthly Notices of the Royal Astronomical Society
Wurster J
(2019)
There is no magnetic braking catastrophe: low-mass star cluster and protostellar disc formation with non-ideal magnetohydrodynamics
in Monthly Notices of the Royal Astronomical Society
Robson D
(2023)
Redshift evolution of galaxy group X-ray properties in the Simba simulations
in Monthly Notices of the Royal Astronomical Society
Garratt-Smithson L
(2019)
Galactic chimney sweeping: the effect of 'gradual' stellar feedback mechanisms on the evolution of dwarf galaxies
in Monthly Notices of the Royal Astronomical Society
Salcido J
(2020)
How feedback shapes galaxies: an analytic model
in Monthly Notices of the Royal Astronomical Society
Sykes C
(2020)
Determining the primordial helium abundance and UV background using fluorescent emission in star-free dark matter haloes
in Monthly Notices of the Royal Astronomical Society
