Cockcroft Phase 4
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
Science has underpinned human progress for centuries. It has improved our quality of life and helps us understand our place in the Universe. The days when important breakthroughs could be achieved by a researcher working alone in a laboratory with minimal equipment are long gone. Now, the most important insights in science demand that researchers work in teams, collaborating between universities and laboratories and across national boundaries, often hand-in-hand with expert industrial partners. They also demand the best and most sophisticated equipment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
Organisations
Publications
Abi B
(2021)
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm.
in Physical review letters
Abramowicz H
(2021)
Conceptual design report for the LUXE experiment
in The European Physical Journal Special Topics
Abramowicz, H.
(2021)
Conceptual design report for the LUXE experiment
in arXiv
Accettura C
(2024)
Erratum: Towards a muon collider
in The European Physical Journal C
Accettura C
(2023)
Towards a muon collider
in The European Physical Journal C
Adam J
(2022)
ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
in Journal of Instrumentation
Agostini P
(2021)
The Large Hadron-Electron Collider at the HL-LHC
in Journal of Physics G: Nuclear and Particle Physics
Albahri T
(2021)
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g - 2 Experiment
in Physical Review D
Albahri T
(2021)
Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
in Physical Review Accelerators and Beams
Albahri T
(2021)
Magnetic-field measurement and analysis for the Muon g - 2 Experiment at Fermilab
in Physical Review A
Alekou A
(2023)
Long term stability studies in the presence of crab cavities and high order multipoles in the CERN super proton synchrotron and high luminosity large hadron collider
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Aliasghari S
(2021)
X-ray computed tomographic and focused ion beam/electron microscopic investigation of coating defects in niobium-coated copper superconducting radio-frequency cavities
in Materials Chemistry and Physics
Allegre O
(2022)
Proceedings of the 38th International MATADOR Conference
Alves-Lima D
(2022)
Visualizing water inside an operating proton exchange membrane fuel cell with video-rate terahertz imaging
in Fuel Cells
An X
(2022)
Bragg scattering induced laser deflection and electron injection in x-ray laser driven wakefield acceleration in crystals
in Physical Review Research
An X
(2024)
On the spin-quantization-axis selection for the spin polarization modeling during laser-electron collision
in Physics of Plasmas
Anderson EK
(2023)
Observation of the effect of gravity on the motion of antimatter.
in Nature
Andreopoulos C
(2023)
Liverpool women in physics: Initiatives and progress
Angal-Kalinin D
(2022)
Status of CLARA at Daresbury Laboratory
Appleby R
(2022)
Merlin++, a flexible and feature-rich accelerator physics and particle tracking library
in Computer Physics Communications
Apsimon R
(2022)
RELIEF: Tanning of Leather with e-beam
Apsimon R
(2021)
Initial Studies of Electron Beams as a Means of Modifying Collagen
in Physics
Apsimon Ö
(2021)
Six-dimensional phase space preservation in a terahertz-driven multistage dielectric-lined rectangular waveguide accelerator
in Physical Review Accelerators and Beams
Armstrong CD
(2021)
Deconvolution of multi-Boltzmann x-ray distribution from linear absorption spectrometer via analytical parameter reduction.
in The Review of scientific instruments
Assmann R
(2021)
Erratum to: EuPRAXIA Conceptual Design Report Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
in The European Physical Journal Special Topics
Aylward JD
(2023)
Characterisation of the UK high energy proton research beamline for high and ultra-high dose rate (FLASH) irradiation.
in Biomedical physics & engineering express
Bacon E
(2022)
High order modes of intense second harmonic light produced from a plasma aperture
in Matter and Radiation at Extremes
Baker C
(2021)
Laser cooling of antihydrogen atoms
in Nature
Baker C
(2023)
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment
in Physical Review Accelerators and Beams
Baker CJ
(2021)
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production.
in Nature communications
Baker CJ
(2021)
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production.
in Nature communications
Baker CJ
(2021)
Laser cooling of antihydrogen atoms.
in Nature
Batsch F
(2021)
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
in Physical Review Letters
Ben-Zvi I
(2024)
Conceptual design of a high reactive-power ferroelectric fast reactive tuner
in Physical Review Accelerators and Beams
Benjamin C
(2022)
Enhanced performance of an Ag(100) photocathode by an ultra-thin MgO film
in Journal of Applied Physics
Bertsche W
(2022)
A Low Energy H - Beamline for the ALPHA Antihydrogen Experiment
in Journal of Physics: Conference Series
Bertsche W
(2022)
A Low Energy H - Beamline for the ALPHA Antihydrogen Experiment
in Journal of Physics: Conference Series
Biglin ER
(2022)
A preclinical radiotherapy dosimetry audit using a realistic 3D printed murine phantom.
in Scientific reports
Boella E
(2021)
Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition.
in Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Boella E
(2022)
Interaction between electrostatic collisionless shocks generates strong magnetic fields
in New Journal of Physics
Bogomilov M
(2022)
Multiple Coulomb scattering of muons in lithium hydride
in Physical Review D
Bonatto A
(2023)
Exploring ultra-high-intensity wakefields in carbon nanotube arrays: An effective plasma-density approach
in Physics of Plasmas
Bonatto A
(2021)
An Active Plasma Beam Dump for EuPRAXIA Beams
in Instruments
Bonatto A
(2023)
Erratum: "Exploring ultra-high-intensity wakefields in carbon nanotube arrays: An effective plasma-density approach" [Phys. Plasmas 30, 033105 (2023)]
in Physics of Plasmas
Bontoiu C
(2023)
Author Correction: TeV/m catapult acceleration of electrons in graphene layers.
in Scientific reports
Bontoiu C
(2023)
TeV/m catapult acceleration of electrons in graphene layers.
in Scientific reports
Brandi F
(2021)
A Few MeV Laser-Plasma Accelerated Proton Beam in Air Collimated Using Compact Permanent Quadrupole Magnets
in Applied Sciences
| Description | A route to high luminosity: Terahertz-frequency ultrashort bunch trains for novel accelerators |
| Amount | £602,105 (GBP) |
| Funding ID | ST/X004090/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2023 |
| End | 08/2028 |
| Description | AWAKE Run 2 |
| Amount | £130,911 (GBP) |
| Funding ID | ST/X005550/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | AWAKE Run 2 phase 2 |
| Amount | £156,242 (GBP) |
| Funding ID | ST/X00614X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 10/2025 |
| Description | AWAKE UK phase II |
| Amount | £396,778 (GBP) |
| Funding ID | ST/X005208/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Antiparticle beamline for experiments on matter antimatter symmetry |
| Amount | £463,725 (GBP) |
| Funding ID | EP/R025363/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 02/2018 |
| End | 02/2024 |
| Description | BioProton: Biologically relevant dose for Proton Therapy Planning |
| Amount | £1,394,633 (GBP) |
| Funding ID | EP/S024344/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 03/2025 |
| Description | Enhancing ERL development in the UK |
| Amount | £122,185 (GBP) |
| Funding ID | ST/X000559/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2026 |
| Description | Enhancing ERL development in the UK |
| Amount | £90,486 (GBP) |
| Funding ID | ST/X000540/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 03/2026 |
| Description | EuPRAXIA Doctoral Network |
| Amount | £530,503 (GBP) |
| Funding ID | EP/X027112/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2026 |
| Description | Exploratory study of PWFA-driven FEL at CLARA |
| Amount | £597,011 (GBP) |
| Funding ID | ST/S006214/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 03/2024 |
| Description | HL-LHC-UK Phase 2 |
| Amount | £1,253,837 (GBP) |
| Funding ID | ST/T001895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK phase 2 |
| Amount | £549,253 (GBP) |
| Funding ID | ST/T001968/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK2 |
| Amount | £2,095,640 (GBP) |
| Funding ID | ST/T001844/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | High Luminosity Upgrade of LHC UK - Phase II |
| Amount | £712,007 (GBP) |
| Funding ID | ST/T001925/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | ITRF LhARA WP5 ULIV |
| Amount | £113,035 (GBP) |
| Funding ID | ST/X002632/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | LLRF for high power facility researching high gradient RF Structures for linear colliders and other applications |
| Amount | £84,955 (GBP) |
| Funding ID | ST/W005743/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2022 |
| End | 03/2022 |
| Description | Manufacturing in the UK for High Gradient Cavities (MUHiG) |
| Amount | £58,285 (GBP) |
| Funding ID | ST/W005247/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 11/2024 |
| Description | NoMAD: Non-destructive Mobile Analysis and imaging Device |
| Amount | £181,033 (GBP) |
| Funding ID | BB/X003833/1 |
| Organisation | Biotechnology and Biological Sciences Research Council (BBSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2023 |
| End | 09/2024 |
| Description | Non-invasive Gas Jet In-Vivo Profile Dosimetry for Particle Beam Therapy (JetDose) |
| Amount | £269,649 (GBP) |
| Funding ID | ST/W002159/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 06/2025 |
| Description | Precision experiments with Antihydrogen |
| Amount | £1,519,339 (GBP) |
| Funding ID | EP/V001426/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 06/2020 |
| End | 06/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 |
| Amount | £513,927 (GBP) |
| Funding ID | ST/T00195X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 2023- |
| Amount | £18,627 (GBP) |
| Funding ID | ST/X006298/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Quantum Gas jet Scanner (QuantumJET) |
| Amount | £87,731 (GBP) |
| Funding ID | ST/W000687/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2021 |
| End | 08/2022 |
| Description | Slow Neutral Antimatter Atoms in Excited States for Inertial-type Precision Measurements (SNAP) |
| Amount | £869,447 (GBP) |
| Funding ID | EP/X014851/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2025 |
| Description | THz driven injection for high-quality high-gradient novel acceleration |
| Amount | £126,659 (GBP) |
| Funding ID | ST/T002735/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 05/2021 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications |
| Amount | £337,964 (GBP) |
| Funding ID | ST/X005895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications (ITRF) |
| Amount | £113,289 (GBP) |
| Funding ID | ST/X005798/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The new intensity frontier: exploring quantum electrodynamic plasmas |
| Amount | £430,374 (GBP) |
| Funding ID | EP/V049232/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2021 |
| End | 10/2025 |
| Title | Dataset of moment coordinate transformations |
| Description | The dataset used to generate the results in "Moment tracking and their coordinate transformations for macroparticles with an application to plasmas around black holes", available as a preprint at https://arxiv.org/abs/2308.01276 PhaseSpaceData contains the data used to generate figure 5. SchwarzschildResults contains the data used to generate figure 7a and figure 8a. KruskalSzekeresResults contains the data used to generate figure 7b and 8b. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/8082180 |
