Astronomy Observation and Theory Consolidated Grant 2016-2019
Lead Research Organisation:
University of Cambridge
Department Name: Institute of Astronomy
Abstract
This proposal is for a single Consolidated Grant to support the majority of research in Theoretical and Observational Astronomy and Astrophysics at the Institute of Astronomy (IoA) in Cambridge.
The theoretical research profile includes work to understand the origin of the Universe itself. Members of the IoA play a leading role in the European Space Agency Planck mission, and will lead a definitive determination of the parameters that both define the geometry of the Universe and quantify the age, size, dark matter, dark energy and baryonic content. The research links to one of the key goals in astrophysics: constraining the properties of the dark matter and dark energy content of the Universe.
The Universe today is filled with galaxies, of which our own Milky Way is a not atypical example. A full understanding of galaxy formation and evolution requires multiple lines of attack. Observations of the resolved stellar populations in the Milky Way and its Local Group companions provide a detailed fossil record of the dynamical assemblies of the galaxies, the formation of stars, and the buildup of heavy elements over a wide range of mass scales and initial conditions. At the other end of the scale, observations of distant galaxies spanning lookback times of up to 12 Gyr provide direct measurements of the evolution of galaxy populations and the buildup of stars and metals with cosmic time. Finally, measurements of the large-scale star formation and abundance properties of nearby galaxies form a vital astrophysical bridge between the studies of nearby resolved stellar populations and the distant high-redshift investigations, by allowing us to characterise the evolutionary properties of the Hubble sequence and the complex "gastrophysical" processes that regulate the accretion of gas and the formation of stars in galaxies.
It is now recognised that there is an intimate link between the evolution of galaxies and the origin and properties of super-massive black holes, which reside at the centre of the Milky Way and other galaxies. The regions close to black holes allow the exploration of physics at the extremes. The formation and properties of super-massive black holes and their relation to the galaxies in which they reside is a research theme that involves theory, X-ray astrophysics and observational programmes in the grant.
Within galaxies, the grant focuses on star formation, from the giant molecular clouds which give birth to stars, down to the more detailed investigations of the processes that lead to the formation of stars and star clusters within these molecular clouds. The investigations will combine state-of-the-art numerical simulations with analytical theories. The quest to study planetary systems around stars and their formation is another key goal. Research activity in the grant covers theoretical work that concentrates on the properties of exoplanets atmospheres, debris discs, discs of asteroids, cometary objects, and dust surrounding stars.
The theoretical research profile includes work to understand the origin of the Universe itself. Members of the IoA play a leading role in the European Space Agency Planck mission, and will lead a definitive determination of the parameters that both define the geometry of the Universe and quantify the age, size, dark matter, dark energy and baryonic content. The research links to one of the key goals in astrophysics: constraining the properties of the dark matter and dark energy content of the Universe.
The Universe today is filled with galaxies, of which our own Milky Way is a not atypical example. A full understanding of galaxy formation and evolution requires multiple lines of attack. Observations of the resolved stellar populations in the Milky Way and its Local Group companions provide a detailed fossil record of the dynamical assemblies of the galaxies, the formation of stars, and the buildup of heavy elements over a wide range of mass scales and initial conditions. At the other end of the scale, observations of distant galaxies spanning lookback times of up to 12 Gyr provide direct measurements of the evolution of galaxy populations and the buildup of stars and metals with cosmic time. Finally, measurements of the large-scale star formation and abundance properties of nearby galaxies form a vital astrophysical bridge between the studies of nearby resolved stellar populations and the distant high-redshift investigations, by allowing us to characterise the evolutionary properties of the Hubble sequence and the complex "gastrophysical" processes that regulate the accretion of gas and the formation of stars in galaxies.
It is now recognised that there is an intimate link between the evolution of galaxies and the origin and properties of super-massive black holes, which reside at the centre of the Milky Way and other galaxies. The regions close to black holes allow the exploration of physics at the extremes. The formation and properties of super-massive black holes and their relation to the galaxies in which they reside is a research theme that involves theory, X-ray astrophysics and observational programmes in the grant.
Within galaxies, the grant focuses on star formation, from the giant molecular clouds which give birth to stars, down to the more detailed investigations of the processes that lead to the formation of stars and star clusters within these molecular clouds. The investigations will combine state-of-the-art numerical simulations with analytical theories. The quest to study planetary systems around stars and their formation is another key goal. Research activity in the grant covers theoretical work that concentrates on the properties of exoplanets atmospheres, debris discs, discs of asteroids, cometary objects, and dust surrounding stars.
Planned Impact
The Institute of Astronomy ensures all students, postdocs and staff are actively involved both in delivering high value science, and also engaging and stimulating a variety of additional knowledge creation activities, focussing on public awareness, and on applications of research developments in medical, space-industry and commercial spheres.
The University of Cambridge has one of the most successful programmes for nurturing knowledge transfer and resulting economic and societal impact between University departments and industry both in the United Kingdom and elsewhere. The extraordinarily successful Cambridge Science Park is well known, with expertise and ideas from Cambridge Astrophysics being involved in the establishment of several businesses in the Cambridge area.
The IoA's approach to the search for impact opportunities is embedded in the mechanisms that the University has in place to facilitate this. The University's Research Office provides the primary point of contact for corporate liaison, and is actively involved in pursuing impact and knowledge exchange activities and opportunities throughout the University. Cambridge Enterprise, the University's technology transfer and entrepreneurship arm, exists to enhance the University of Cambridge's contribution to society through knowledge transfer from the University to the community. The Institute of Astronomy members interact with these organisations regularly. Engagement with the wider economic community is supported
by a Collaborative Research Facilitator, based in the Cavendish Laboratory, who is able to provide advice on relevant networking and funding opportunities.
In summary, the research carried out at the IoA supported through this will lead to a wide range of impacts across a broad range of areas. From direct and specific impact in the application of analysis techniques to problems in the medical field, in the gaming industry, to inspirational outreach programmes engaging with those teaching the next generation of scientists.
The University of Cambridge has one of the most successful programmes for nurturing knowledge transfer and resulting economic and societal impact between University departments and industry both in the United Kingdom and elsewhere. The extraordinarily successful Cambridge Science Park is well known, with expertise and ideas from Cambridge Astrophysics being involved in the establishment of several businesses in the Cambridge area.
The IoA's approach to the search for impact opportunities is embedded in the mechanisms that the University has in place to facilitate this. The University's Research Office provides the primary point of contact for corporate liaison, and is actively involved in pursuing impact and knowledge exchange activities and opportunities throughout the University. Cambridge Enterprise, the University's technology transfer and entrepreneurship arm, exists to enhance the University of Cambridge's contribution to society through knowledge transfer from the University to the community. The Institute of Astronomy members interact with these organisations regularly. Engagement with the wider economic community is supported
by a Collaborative Research Facilitator, based in the Cavendish Laboratory, who is able to provide advice on relevant networking and funding opportunities.
In summary, the research carried out at the IoA supported through this will lead to a wide range of impacts across a broad range of areas. From direct and specific impact in the application of analysis techniques to problems in the medical field, in the gaming industry, to inspirational outreach programmes engaging with those teaching the next generation of scientists.
Organisations
Publications
Jofré P
(2017)
Climbing the cosmic ladder with stellar twins in RAVE with Gaia
in Monthly Notices of the Royal Astronomical Society
Jones G
(2016)
NEW CONSTRAINTS ON THE MOLECULAR GAS IN THE PROTOTYPICAL HyLIRGs BRI 1202-0725 AND BRI 1335-0417
in The Astrophysical Journal
Jones G
(2016)
NEW CONSTRAINTS ON THE MOLECULAR GAS IN THE PROTOTYPICAL HyLIRGs BRI 1202-0725 AND BRI 1335-0417
in The Astrophysical Journal
Kacharov N
(2017)
Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix
in Monthly Notices of the Royal Astronomical Society
Kacharov N
(2017)
Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix
in Monthly Notices of the Royal Astronomical Society
Kahane C
(2018)
First Measurement of the 14 N/ 15 N Ratio in the Analog of the Sun Progenitor OMC-2 FIR4
in The Astrophysical Journal
Kahre L
(2018)
Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS
in The Astrophysical Journal
Kahre L
(2018)
Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS
in The Astrophysical Journal
Kalaja A
(2023)
The reconstructed CMB lensing bispectrum
Kalaja A
(2022)
The reconstructed CMB lensing bispectrum
Kalaja A
(2023)
The reconstructed CMB lensing bispectrum
in Journal of Cosmology and Astroparticle Physics
Kama M
(2019)
Abundant Refractory Sulfur in Protoplanetary Disks
in The Astrophysical Journal
Kama M
(2020)
Mass constraints for 15 protoplanetary discs from HD 1-0
in Astronomy & Astrophysics
Kara E
(2017)
The high-Eddington NLS1 Ark 564 has the coolest corona
in Monthly Notices of the Royal Astronomical Society
Kara E
(2020)
Discovery of a soft X-ray lag in the ultraluminous X-ray source NGC 1313 X-1
in Monthly Notices of the Royal Astronomical Society
Kara E
(2019)
The corona contracts in a black-hole transient.
in Nature
Kara E
(2016)
A global look at X-ray time lags in Seyfert galaxies
in Astronomische Nachrichten
Kara E
(2016)
A global look at X-ray time lags in Seyfert galaxies
in Monthly Notices of the Royal Astronomical Society
Kara E
(2019)
The corona contracts in a black-hole transient.
in Nature
Katz D
(2018)
Mapping the Milky Way disc kinematics
Katz H
(2018)
A Census of the LyC photons that form the UV background during reionization
in Monthly Notices of the Royal Astronomical Society
Katz H
(2019)
Tracing the sources of reionization in cosmological radiation hydrodynamics simulations
in Monthly Notices of the Royal Astronomical Society
Katz H
(2019)
Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST
in Monthly Notices of the Royal Astronomical Society
Katz H
(2018)
A Census of the LyC photons that form the UV background during reionization
in Monthly Notices of the Royal Astronomical Society
Katz H
(2017)
Interpreting ALMA observations of the ISM during the epoch of reionization
in Monthly Notices of the Royal Astronomical Society
Katz H
(2021)
Introducing SPHINX-MHD: the impact of primordial magnetic fields on the first galaxies, reionization, and the global 21-cm signal
in Monthly Notices of the Royal Astronomical Society
Katz H
(2020)
New methods for identifying Lyman continuum leakers and reionization-epoch analogues
in Monthly Notices of the Royal Astronomical Society
Katz H
(2022)
The nature of high [O iii ]88 µ m/[C ii ]158 µm galaxies in the epoch of reionization: Low carbon abundance and a top-heavy IMF?
in Monthly Notices of the Royal Astronomical Society
Keating L
(2020)
Constraining the second half of reionization with the Ly ß forest
in Monthly Notices of the Royal Astronomical Society
Keating L
(2018)
Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization
in Monthly Notices of the Royal Astronomical Society
Keating L
(2020)
Constraining the second half of reionization with the Ly ß forest
Keating L
(2016)
Testing the effect of galactic feedback on the IGM at z ~ 6 with metal-line absorbers
in Monthly Notices of the Royal Astronomical Society
Keating L
(2020)
Long troughs in the Lyman-a forest below redshift 6 due to islands of neutral hydrogen
in Monthly Notices of the Royal Astronomical Society
Keek L
(2018)
NICER Observes the Effects of an X-Ray Burst on the Accretion Environment in Aql X-1
in The Astrophysical Journal Letters
Kennedy G
(2018)
ALMA observations of the narrow HR 4796A debris ring
in Monthly Notices of the Royal Astronomical Society
Kennedy G
(2019)
An automated search for transiting exocomets
in Monthly Notices of the Royal Astronomical Society
Kennedy G
(2018)
ALMA observations of the narrow HR 4796A debris ring
in Monthly Notices of the Royal Astronomical Society
Kennedy G
(2018)
Kuiper belt analogues in nearby M-type planet-host systems
in Monthly Notices of the Royal Astronomical Society
Kennedy G
(2018)
Kuiper belt analogues in nearby M-type planet-host systems
in Monthly Notices of the Royal Astronomical Society
Kennedy GM
(2017)
The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.
in Royal Society open science
Kennedy GM
(2017)
The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.
in Royal Society open science
| Title | VLT/X-SHOOTER & Keck/ESI spectra of z~5 QSOs |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomical Journal (AAS) with title 'Chasing the tail of cosmic reionization with dark gap statistics in the Ly{alpha} forest over 5 |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/923/223 |
