Cockcroft Phase 4
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
Science has underpinned human progress for centuries. It has improved our quality of life and helps us understand our place in the Universe. The days when important breakthroughs could be achieved by a researcher working alone in a laboratory with minimal equipment are long gone. Now, the most important insights in science demand that researchers work in teams, collaborating between universities and laboratories and across national boundaries, often hand-in-hand with expert industrial partners. They also demand the best and most sophisticated equipment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
Organisations
Publications
Gschwendtner E
(2022)
The AWAKE Run 2 programme and beyond
Gschwendtner E
(2022)
The AWAKE Run 2 Programme and Beyond
in Symmetry
Habib A
(2023)
Plasma Photocathodes
in Annalen der Physik
Habib AF
(2023)
Attosecond-Angstrom free-electron-laser towards the cold beam limit.
in Nature communications
Hafych V
(2021)
Analysis of Proton Bunch Parameters in the AWAKE Experiment
Hahn C
(2022)
Towards harmonizing clinical linear energy transfer (LET) reporting in proton radiotherapy: a European multi-centric study.
in Acta oncologica (Stockholm, Sweden)
Heaven C
(2022)
The suitability of micronuclei as markers of relative biological effect
in Mutagenesis
Henthorn NT
(2023)
Proposing a Clinical Model for RBE Based on Proton Track-End Counts.
in International journal of radiation oncology, biology, physics
Heritage S
(2023)
An Update to the Malthus Model for Radiotherapy Utilisation in England
in Clinical Oncology
Hermann B
(2022)
Inverse-Designed Narrowband THz Radiator for Ultrarelativistic Electrons.
in ACS photonics
Herrod A
(2022)
Optimal Configuration of Proton-Therapy Accelerators for Relative-Stopping-Power Resolution in Proton Computed Tomography
in Physical Review Applied
Hewett S
(2022)
Spintronic terahertz emitters exploiting uniaxial magnetic anisotropy for field-free emission and polarization control
in Applied Physics Letters
Hidding B
(2023)
Progress in Hybrid Plasma Wakefield Acceleration
in Photonics
Higginson A
(2021)
Influence of target-rear-side short scale length density gradients on laser-driven proton acceleration
in Plasma Physics and Controlled Fusion
Hounsell B
(2022)
Conceptual Design of the PERLE Injector
Hounsell B
(2023)
Conceptual design of the PERLE injector
Huang J
(2022)
Ion Acoustic Shock Wave Formation and Ion Acceleration in the Interactions of Pair Jets with Electron-ion Plasmas
in The Astrophysical Journal
Huang J
(2021)
Relativistic-induced opacity of electron-positron plasmas
in Plasma Physics and Controlled Fusion
Huck S
(2023)
Toward a pulsed antihydrogen beam for WEP tests in AEgIS
in EPJ Web of Conferences
Ige TA
(2021)
Surveying the Challenges to Improve Linear Accelerator-based Radiation Therapy in Africa: a Unique Collaborative Platform of All 28 African Countries Offering Such Treatment.
in Clinical oncology (Royal College of Radiologists (Great Britain))
Ingram S
(2022)
A computational approach to quantifying miscounting of radiation-induced double-strand break immunofluorescent foci
in Communications Biology
Jiang X
(2023)
Broadband electromagnetic emission via mode conversion mediated by stimulated Raman scattering in inhomogeneous plasma
in Physics of Plasmas
Jiang X
(2024)
Anomalous hot electron generation via stimulated Raman scattering in plasma with up-ramp density profiles
in Plasma Physics and Controlled Fusion
Jones L
(2021)
Non-monotonic behaviour in the mean transverse energy of electrons emitted from a reflection-mode p-GaAs(Cs,O) photocathode during its QE degradation through oxygen exposure
in Journal of Physics D: Applied Physics
Jones L
(2024)
Mean transverse energy, surface chemical and physical characterization of CERN-made Cs-Te photocathodes
in Physical Review Accelerators and Beams
Jones LB
(2022)
The measurement of photocathode transverse energy distribution curves (TEDCs) using the transverse energy spread spectrometer (TESS) experimental system.
in The Review of scientific instruments
Jonnerby J
(2023)
Measurement of the decay of laser-driven linear plasma wakefields.
in Physical review. E
King M
(2023)
Perspectives on laser-plasma physics in the relativistic transparency regime
in The European Physical Journal A
King M
(2025)
A Systematic Investigation of Beam Losses and Position-Reconstruction Techniques Measured with a Novel oBLM at CLEAR
in Instruments
King M
(2023)
Geometry effects on energy selective focusing of laser-driven protons with open and closed hemisphere-cone targets
in Plasma Physics and Controlled Fusion
Kinsler P
(2021)
A new introduction to spatial dispersion: Reimagining the basic concepts
in Photonics and Nanostructures - Fundamentals and Applications
Kirby G
(2022)
Superconducting Curved Canted-Cosine-Theta (CCT) for the HIE-ISOLDE Recoil Separator Ring at CERN
in IEEE Transactions on Applied Superconductivity
Knetsch A
(2021)
Stable witness-beam formation in a beam-driven plasma cathode
in Physical Review Accelerators and Beams
Kokurewicz K
(2021)
An experimental study of focused very high energy electron beams for radiotherapy
in Communications Physics
Kurz T
(2021)
Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams.
in Nature communications
Köhne S
(2023)
Unsupervised classification of fully kinetic simulations of plasmoid instability using self-organizing maps (SOMs)
in Journal of Plasma Physics
Leggieri A
(2025)
Harmonic Klystron Frequency Converter
in IEEE Transactions on Electron Devices
Li BY
(2024)
Spectral modulation of high-order harmonics in relativistic laser-solid interaction.
in Physical review. E
Li F
(2022)
Design of a 1-THz Fourth-Harmonic Gyrotron Driven by Axis-Encircling Electron Beam
in IEEE Transactions on Electron Devices
Li G
(2022)
Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh.
in Nature communications
Li Q
(2022)
Near infrared performance of a pile-of-plates polariser based on poly-crystalline Zinc Selenide
in Optical Materials
Li Q
(2022)
Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation
in Opto-Electronic Advances
| Description | A route to high luminosity: Terahertz-frequency ultrashort bunch trains for novel accelerators |
| Amount | £602,105 (GBP) |
| Funding ID | ST/X004090/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2023 |
| End | 08/2028 |
| Description | AWAKE Run 2 |
| Amount | £130,911 (GBP) |
| Funding ID | ST/X005550/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | AWAKE Run 2 phase 2 |
| Amount | £156,242 (GBP) |
| Funding ID | ST/X00614X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 10/2025 |
| Description | AWAKE UK phase II |
| Amount | £396,778 (GBP) |
| Funding ID | ST/X005208/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Antiparticle beamline for experiments on matter antimatter symmetry |
| Amount | £463,725 (GBP) |
| Funding ID | EP/R025363/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 02/2018 |
| End | 02/2024 |
| Description | BioProton: Biologically relevant dose for Proton Therapy Planning |
| Amount | £1,394,633 (GBP) |
| Funding ID | EP/S024344/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 03/2025 |
| Description | Enhancing ERL development in the UK |
| Amount | £122,185 (GBP) |
| Funding ID | ST/X000559/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2026 |
| Description | Enhancing ERL development in the UK |
| Amount | £90,486 (GBP) |
| Funding ID | ST/X000540/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 03/2026 |
| Description | EuPRAXIA Doctoral Network |
| Amount | £530,503 (GBP) |
| Funding ID | EP/X027112/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2026 |
| Description | Exploratory study of PWFA-driven FEL at CLARA |
| Amount | £597,011 (GBP) |
| Funding ID | ST/S006214/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 03/2024 |
| Description | HL-LHC-UK Phase 2 |
| Amount | £1,253,837 (GBP) |
| Funding ID | ST/T001895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK phase 2 |
| Amount | £549,253 (GBP) |
| Funding ID | ST/T001968/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK2 |
| Amount | £2,095,640 (GBP) |
| Funding ID | ST/T001844/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | High Luminosity Upgrade of LHC UK - Phase II |
| Amount | £712,007 (GBP) |
| Funding ID | ST/T001925/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | ITRF LhARA WP5 ULIV |
| Amount | £113,035 (GBP) |
| Funding ID | ST/X002632/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | LLRF for high power facility researching high gradient RF Structures for linear colliders and other applications |
| Amount | £84,955 (GBP) |
| Funding ID | ST/W005743/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2022 |
| End | 03/2022 |
| Description | Manufacturing in the UK for High Gradient Cavities (MUHiG) |
| Amount | £58,285 (GBP) |
| Funding ID | ST/W005247/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 11/2024 |
| Description | NoMAD: Non-destructive Mobile Analysis and imaging Device |
| Amount | £181,033 (GBP) |
| Funding ID | BB/X003833/1 |
| Organisation | Biotechnology and Biological Sciences Research Council (BBSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2023 |
| End | 09/2024 |
| Description | Non-invasive Gas Jet In-Vivo Profile Dosimetry for Particle Beam Therapy (JetDose) |
| Amount | £269,649 (GBP) |
| Funding ID | ST/W002159/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 06/2025 |
| Description | Precision experiments with Antihydrogen |
| Amount | £1,519,339 (GBP) |
| Funding ID | EP/V001426/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 06/2020 |
| End | 06/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 |
| Amount | £513,927 (GBP) |
| Funding ID | ST/T00195X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 2023- |
| Amount | £18,627 (GBP) |
| Funding ID | ST/X006298/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Quantum Gas jet Scanner (QuantumJET) |
| Amount | £87,731 (GBP) |
| Funding ID | ST/W000687/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2021 |
| End | 08/2022 |
| Description | Slow Neutral Antimatter Atoms in Excited States for Inertial-type Precision Measurements (SNAP) |
| Amount | £869,447 (GBP) |
| Funding ID | EP/X014851/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2025 |
| Description | THz driven injection for high-quality high-gradient novel acceleration |
| Amount | £126,659 (GBP) |
| Funding ID | ST/T002735/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 05/2021 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications |
| Amount | £337,964 (GBP) |
| Funding ID | ST/X005895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications (ITRF) |
| Amount | £113,289 (GBP) |
| Funding ID | ST/X005798/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The new intensity frontier: exploring quantum electrodynamic plasmas |
| Amount | £430,374 (GBP) |
| Funding ID | EP/V049232/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2021 |
| End | 10/2025 |
| Title | Dataset of moment coordinate transformations |
| Description | The dataset used to generate the results in "Moment tracking and their coordinate transformations for macroparticles with an application to plasmas around black holes", available as a preprint at https://arxiv.org/abs/2308.01276 PhaseSpaceData contains the data used to generate figure 5. SchwarzschildResults contains the data used to generate figure 7a and figure 8a. KruskalSzekeresResults contains the data used to generate figure 7b and 8b. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/8082180 |
