Cockcroft Phase 4
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
Science has underpinned human progress for centuries. It has improved our quality of life and helps us understand our place in the Universe. The days when important breakthroughs could be achieved by a researcher working alone in a laboratory with minimal equipment are long gone. Now, the most important insights in science demand that researchers work in teams, collaborating between universities and laboratories and across national boundaries, often hand-in-hand with expert industrial partners. They also demand the best and most sophisticated equipment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
The Cockcroft Institute reflects these changes. Its purpose is to research, design and develop particle accelerators, machines that can be used to reveal the nature of matter, to probe what happened at the instant the universe was born and to develop new materials and healthcare tools to improve our quality of life. These machines are at the cutting-edge of technology, pushing to the limits our ability to control and understand processes happening at the smallest scales, and at the speed of light. They range from fairly small instruments built to support the semi-conductor industry, airport security and radiotherapy to enormous facilities providing intense, high energy beams of particles to create and probe the innermost workings of atoms. The global economy can afford only a few of these latter machines and so they demand collaboration between multi-national teams of the world's best scientists and engineers.
The Cockcroft Institute - a collaboration between academia, national laboratories, industry and local economy - brings together the best accelerator scientists, engineers, educators and industrialists to conceive, design, construct and use innovative instruments of discovery at all scales and lead the UK's participation in flagship international experiments. It stimulates the curiosity of emerging minds via the education of the future generation and engages with industrial partners to generate wealth for the community that sustains us.
Established more than a fifteen years ago, the Cockcroft Institute is increasingly focusing its attention on three parallel and complementary activities:
- Contributions to near future scientific frontier facilities based on incremental advances to conventional accelerating technologies
- Ground-breaking research in novel methods of particle acceleration which have the long term potential to yield much more compact types of particle accelerators
- Applications of accelerators to address global challenges in healthcare, security, energy, manufacturing and the environment.
Organisations
Publications
Burnet NG
(2022)
Estimating the percentage of patients who might benefit from proton beam therapy instead of X-ray radiotherapy.
in The British journal of radiology
Heaven C
(2022)
The suitability of micronuclei as markers of relative biological effect
in Mutagenesis
Gao Y
(2022)
Effect of the film thickness on electron stimulated desorption yield from Ti-Zr-V coating
in Journal of Instrumentation
MacLachlan A
(2022)
Efficient, 0.35-THz Overmoded Oscillator Based on a Two-Dimensional Periodic Surface Lattice
in IEEE Transactions on Electron Devices
Donaldson C
(2022)
Fivefold Helically Corrugated Waveguide for High-Power W -Band Gyro-Devices and Pulse Compression
in IEEE Transactions on Electron Devices
Feehan JS
(2022)
Computer-automated design of mode-locked fiber lasers.
in Optics express
Noakes T
(2022)
Oxygen plasma cleaning of copper for photocathode applications: A MEIS and XPS study
in Vacuum
Ingram S
(2022)
A computational approach to quantifying miscounting of radiation-induced double-strand break immunofluorescent foci
in Communications Biology
Hounsell B
(2022)
Conceptual Design of the PERLE Injector
Veglia B
(2022)
Low energy beam dynamics simulations for ELENA optimization
Bogomilov M
(2022)
Multiple Coulomb scattering of muons in lithium hydride
in Physical Review D
Shukla N
(2022)
Slowdown of interpenetration of two counterpropagating plasma slabs due to collective effects.
in Physical review. E
Luo M
(2022)
On the role of bandwidth in pump and seed light waves for stimulated Raman scattering in inhomogeneous plasmas
in Physics of Plasmas
Saito Y
(2022)
Modelling nonlocal nonlinear spin dynamics in antiferromagnetic orthoferrites
in Faraday Discussions
Walk F
(2022)
Ion energy analysis of a bipolar HiPIMS discharge using a retarding field energy analyser
in Plasma Sources Science and Technology
Loisch G
(2022)
Direct measurement of photocathode time response in a high-brightness photoinjector
in Applied Physics Letters
Foerster F
(2022)
Stable and High-Quality Electron Beams from Staged Laser and Plasma Wakefield Accelerators
in Physical Review X
Bertsche W
(2022)
A Low Energy H - Beamline for the ALPHA Antihydrogen Experiment
in Journal of Physics: Conference Series
Apsimon R
(2022)
RELIEF: Tanning of Leather with e-beam
Verra L
(2022)
Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma.
in Physical review letters
Ramoisiaux E
(2022)
Self-consistent numerical evaluation of concrete shielding activation for proton therapy systems Application to the proton therapy research centre in Charleroi, Belgium
in The European Physical Journal Plus
Wroe L
(2022)
Creating exact multipolar fields with azimuthally modulated rf cavities
in Physical Review Accelerators and Beams
Saveliev Y
(2022)
Experimental study of transverse effects in planar dielectric wakefield accelerating structures with elliptical beams
in Physical Review Accelerators and Beams
Castilla A
(2022)
Ka-band linearizer structure studies for a compact light source
in Physical Review Accelerators and Beams
Gschwendtner E
(2022)
The AWAKE Run 2 programme and beyond
Gschwendtner E
(2022)
The AWAKE Run 2 Programme and Beyond
in Symmetry
Scherkl P
(2022)
Plasma photonic spatiotemporal synchronization of relativistic electron and laser beams
in Physical Review Accelerators and Beams
Li G
(2022)
Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh.
in Nature communications
Boella E
(2022)
Interaction between electrostatic collisionless shocks generates strong magnetic fields
in New Journal of Physics
Li F
(2022)
Design of a 1-THz Fourth-Harmonic Gyrotron Driven by Axis-Encircling Electron Beam
in IEEE Transactions on Electron Devices
Geng P
(2022)
Propagation of axiparabola-focused laser pulses in uniform plasmas
in Physics of Plasmas
Huang J
(2022)
Ion Acoustic Shock Wave Formation and Ion Acceleration in the Interactions of Pair Jets with Electron-ion Plasmas
in The Astrophysical Journal
Zhao J
(2022)
All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields
in Communications Physics
Liang L
(2022)
Acceleration of an Electron Bunch with a Non-Gaussian Transverse Profile in Proton-Driven Plasma Wakefield
in Applied Sciences
Adam J
(2022)
ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
in Journal of Instrumentation
Gnacadja E
(2022)
Optimization of proton therapy eye-treatment systems toward improved clinical performances
in Physical Review Research
Biglin ER
(2022)
A preclinical radiotherapy dosimetry audit using a realistic 3D printed murine phantom.
in Scientific reports
Vozenin MC
(2022)
FLASH Radiotherapy & Particle Therapy conference, FRPT2021.
in Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Salehilashkajani A
(2022)
Supersonic gas jet-based beam profile monitor using beam-induced fluorescence
Zhu X
(2022)
Bunched Proton Acceleration from a Laser-Irradiated Cone Target
in Physical Review Applied
| Description | A route to high luminosity: Terahertz-frequency ultrashort bunch trains for novel accelerators |
| Amount | £602,105 (GBP) |
| Funding ID | ST/X004090/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2023 |
| End | 08/2028 |
| Description | AWAKE Run 2 |
| Amount | £130,911 (GBP) |
| Funding ID | ST/X005550/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | AWAKE Run 2 phase 2 |
| Amount | £156,242 (GBP) |
| Funding ID | ST/X00614X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 10/2025 |
| Description | AWAKE UK phase II |
| Amount | £396,778 (GBP) |
| Funding ID | ST/X005208/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Antiparticle beamline for experiments on matter antimatter symmetry |
| Amount | £463,725 (GBP) |
| Funding ID | EP/R025363/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 02/2018 |
| End | 02/2024 |
| Description | BioProton: Biologically relevant dose for Proton Therapy Planning |
| Amount | £1,394,633 (GBP) |
| Funding ID | EP/S024344/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 03/2025 |
| Description | Enhancing ERL development in the UK |
| Amount | £122,185 (GBP) |
| Funding ID | ST/X000559/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2026 |
| Description | Enhancing ERL development in the UK |
| Amount | £90,486 (GBP) |
| Funding ID | ST/X000540/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 03/2026 |
| Description | EuPRAXIA Doctoral Network |
| Amount | £530,503 (GBP) |
| Funding ID | EP/X027112/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2026 |
| Description | Exploratory study of PWFA-driven FEL at CLARA |
| Amount | £597,011 (GBP) |
| Funding ID | ST/S006214/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 03/2024 |
| Description | HL-LHC-UK Phase 2 |
| Amount | £1,253,837 (GBP) |
| Funding ID | ST/T001895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK phase 2 |
| Amount | £549,253 (GBP) |
| Funding ID | ST/T001968/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | HL-LHC-UK2 |
| Amount | £2,095,640 (GBP) |
| Funding ID | ST/T001844/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | High Luminosity Upgrade of LHC UK - Phase II |
| Amount | £712,007 (GBP) |
| Funding ID | ST/T001925/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2026 |
| Description | ITRF LhARA WP5 ULIV |
| Amount | £113,035 (GBP) |
| Funding ID | ST/X002632/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | LLRF for high power facility researching high gradient RF Structures for linear colliders and other applications |
| Amount | £84,955 (GBP) |
| Funding ID | ST/W005743/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2022 |
| End | 03/2022 |
| Description | Manufacturing in the UK for High Gradient Cavities (MUHiG) |
| Amount | £58,285 (GBP) |
| Funding ID | ST/W005247/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2022 |
| End | 11/2024 |
| Description | NoMAD: Non-destructive Mobile Analysis and imaging Device |
| Amount | £181,033 (GBP) |
| Funding ID | BB/X003833/1 |
| Organisation | Biotechnology and Biological Sciences Research Council (BBSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2023 |
| End | 09/2024 |
| Description | Non-invasive Gas Jet In-Vivo Profile Dosimetry for Particle Beam Therapy (JetDose) |
| Amount | £269,649 (GBP) |
| Funding ID | ST/W002159/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 06/2025 |
| Description | Precision experiments with Antihydrogen |
| Amount | £1,519,339 (GBP) |
| Funding ID | EP/V001426/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 06/2020 |
| End | 06/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 |
| Amount | £513,927 (GBP) |
| Funding ID | ST/T00195X/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2024 |
| Description | Production of high quality electron bunches in AWAKE Run 2 2023- |
| Amount | £18,627 (GBP) |
| Funding ID | ST/X006298/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2022 |
| End | 03/2025 |
| Description | Quantum Gas jet Scanner (QuantumJET) |
| Amount | £87,731 (GBP) |
| Funding ID | ST/W000687/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2021 |
| End | 08/2022 |
| Description | Slow Neutral Antimatter Atoms in Excited States for Inertial-type Precision Measurements (SNAP) |
| Amount | £869,447 (GBP) |
| Funding ID | EP/X014851/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2023 |
| End | 12/2025 |
| Description | THz driven injection for high-quality high-gradient novel acceleration |
| Amount | £126,659 (GBP) |
| Funding ID | ST/T002735/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2019 |
| End | 05/2021 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications |
| Amount | £337,964 (GBP) |
| Funding ID | ST/X005895/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The Laser-hybrid Accelerator for Radiobiological Applications (ITRF) |
| Amount | £113,289 (GBP) |
| Funding ID | ST/X005798/1 |
| Organisation | Science and Technologies Facilities Council (STFC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 09/2022 |
| End | 09/2024 |
| Description | The new intensity frontier: exploring quantum electrodynamic plasmas |
| Amount | £430,374 (GBP) |
| Funding ID | EP/V049232/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 11/2021 |
| End | 10/2025 |
| Title | Dataset of moment coordinate transformations |
| Description | The dataset used to generate the results in "Moment tracking and their coordinate transformations for macroparticles with an application to plasmas around black holes", available as a preprint at https://arxiv.org/abs/2308.01276 PhaseSpaceData contains the data used to generate figure 5. SchwarzschildResults contains the data used to generate figure 7a and figure 8a. KruskalSzekeresResults contains the data used to generate figure 7b and 8b. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/8082180 |
