AMRSim: A Microbial Reality Simulator

Lead Research Organisation: Glasgow School of Art
Department Name: School of Design


Antimicrobial-resistant bacteria are an established and growing issue in small animal veterinary practice in the developed world. The problem is, people can't see the bacteria on them, on animals, or on the surfaces and objects they touch. This makes it difficult to prevent and control infection in the most effective manner, as habits and standard practice are hard to change if you don't know what you are dealing with. While data exist to inform best practise in infection control, they are usually published in academic journals, thus having limited impact on what is done in practise.

Our solution is to make the 'invisible, visible' by building a three-dimensional graphical simulator of the interior of a veterinary practice in which humans, animals, and bacteria interact, according to rules observed from real-life. We are calling this simulator, AMRSim - A Microbial Reality Simulator.

The indoor environment of the vet practice can be viewed as a complex 'ecosystem' in which animals and humans interact with one another and their physical environment. Within this ecosystem there is a third, unseen group of actors - microbial agents - some of which have the capability to cause infectious disease in animals and/or humans. In the case of bacteria, they often persist in the environment on surfaces as a community. It is within these bacterial communities that they are more resistant to physical or chemical removal and are able to exchange mobile genetic elements that confer resistance to antibiotics. For this reason, activities such as disinfecting surfaces, sterilising instruments and treating patients with antibiotics, are a fundamental part of the working life of health professionals.

AMRSim will take data from the real world and make them 'come alive' in a visual way. Actual video footage will be used of the movements of humans and animals within a busy vet practice and the procedures undertaken, including those intended to reduce infection. The bacteria within the simulation will be introduced according to what is known of bacterial infection (types, location, antibiotic resistance) within vet practices from data already avaliable. Importantly, AMRSim will allow these normally invisible bacteria to be 'seen' as they multiply and spread through the indoor environment on people, animals and surfaces. By 'seeing' the interactions of animals, humans, and bacteria within space and time it will be possible to improve efforts to prevent bacteria entering and spreading through the physical environment, and improve their removal when they do.

AMRSim will be brought, at progressive stages of its development, to a series of co-design workshops with end-users to ensure it is made meaningful, appropriate and usable, and addresses key learning outcomes with respect to preventing and controlling infection.

The theory we shall test is that as practitioners interact with AMRSim, both in its development and then in its application, they will gain a greater appreciation for: 1) the impact their behaviours and activities can have on infection; 2) where weaknesses lie in current practise; and 3) where changes made to the way people and animals interact with each other and their environment can disrupt the status quo. These will lead to a reduced risk of bacterial contamination and infection, and ultimately reduced reliance on antibiotics.

Our previous work in the human health environment has shown the power of 'making the invisible, visible' by simulating infection control on a hospital ward using a visual simulator. We shall build on this experience with a new, multidisciplinary team with expertise in digital design, spatial design, co-design, environmental psychology, veterinary practice, and microbiology. It is our intention that the experience we gain in developing and using AMRSim will be applied more widely, such as for teaching students and to simulate other indoor environments where biosecurity is paramount.

Planned Impact

This research has the potential to reduce infection in veterinary practice, thereby reducing reliance of antibiotics and creating an environment where AMR is disfavoured. As well as this direct application, this proposal will also be relevant to other stakeholders. Specifically, we expect it will provide benefit to the following stakeholders in the following respects.

With respect to all communities that use quantitative data, the project will be an example of how data that are traditionally published in academic formats can be made to come alive and have demonstrable impact in the real world, thereby improving the accessibility and reach of data and their potential to be understood, adopted and to change behaviour. Our approach to realising this is described in the Pathways to Impact document.

To the scientific community:
>Providing an example of how the inclusion of Design that incorporates stakeholder engagement, e.g., via co-design, visualisation and iterative prototyping expertise, can add significant value to multi-disciplinary teams and provide benefit to the more traditional scientific disciplines usually linked with AMR research.
>Furthering our understanding of how to measure and incorporate drivers of behaviour into interventions for the behavioural sciences. Specifically, habits are recognised as a key barrier for behaviour change. However, as they are difficult to measure due to their nature of being an automatic process, this project will produce methodological and theoretical developments of important to the psychology community.
>Promoting a 'One Health' approach to tackling AMR, by directly showing the importance to infection of how humans, animals, and the environment interact with one another in ways that can be manipulated, disrupted, and visualised.

To veterinary practitioners across their various roles - consultant, nurse and auxiliary:
>Helping untangle, and making visible and more understandable, the complex mechanisms of infection spread, control and prevention in a demanding service environment, the potential threats and risks of certain practices, and to explore improved practices aimed at minimising infection and reliance on antibiotics.

To veterinary bodies and associations:
>Such as the Veterinary Medicines Directorate, Royal College of Veterinary Surgeons, Royal College of Pathologists, Society of Practicing Veterinary Surgeons, British Veterinary Association and Defra, by providing evidence-based recommendations for safer practise.

To digital design and 3D software practitioners:
>Providing an example of how their skills can contribute, in a very practical way, to the global AMR challenge. Poyade is an executive member of EuroVR, an association whose aim is gather VR/AR actors in the EU. Although the visualisation and interaction in the digital tool are not developed as Virtual Reality, the EuroVR conference can be a useful means for dissemination.

To the designers and architects of healthcare environments:
> Providing evidence-based rationales for particular spatial layouts which inform building notes, design guidelines and risk assessment.

To healthcare communities - those involving both people and animals:
>Providing proof of concept that our novel approach might be applied usefully in other human and animal settings.

To the public at large:
>By making research on infection control and AMR accessible and engaging; making it possible to 'see' the conditions for how AMR might occur, contextualised in a largely familiar everyday setting, particularly for those who are pet owners.

To the media:
>We can foresee that an ability to communicate visually to lay audiences will be helpful for media purposes.


10 25 50
Description Veterinary Practice
Geographic Reach Multiple continents/international 
Policy Influence Type Influenced training of practitioners or researchers