Dynamic allostery of Sec machinery in protein transport and folding

Lead Research Organisation: University of Bristol
Department Name: Biochemistry

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Technical Summary

The proposal aims to delineate the molecular mechanism of protein translocation by the Sec system. This machinery provides the main pathway for protein secretion and membrane protein insertion across cellular membranes, and is conserved among all forms of life. Transport of proteins across the bacterial inner membrane occurs primarily at the SecYEG translocon. In this case, secretion mostly occurs post-translationally, with the help of cytosolic ATPase SecA, which associates to drive the protein through the SecY-channel, using energy from ATP hydrolysis and the trans-membrane proton motive force (PMF). Structural biology has revealed the arrangements and interactions between SecYEG and SecA, and provides framework for the project. However, despite this detailed information, the central question of how a polypeptide is dynamically translocated through, or into, the membrane remains to be answered.
This proposal builds on our discovery of two-way allosteric communication between the SecA ATP binding site and the central channel of SecY enabled by advances in single molecule detection. We aim to elucidate the mechanism of this dynamic allosteric coupling and the role of pore dynamics during protein translocation for: secretion, as well as for integral membrane protein insertion and outer membrane protein folding and insertion. We will use a combination of biochemistry and time-resolved single molecule fluorescence and computational tools to follow translocation, and corresponding conformational changes. Förster resonance energy transfer (FRET) will allow real time dynamic reporting for interpretation in the context of the available high-resolution structures.
The results will address the key outstanding question: how rapid, stochastic gating of the translocon is allosterically coupled to slower ATP hydrolysis at the SecA motor, and whether such dynamic coupling is required to fulfil additional insertion and downstream functions of this versatile membrane machinery.

Planned Impact

The overarching aim of the proposal is to gain an understanding of an important fundamental aspects of bacterial biology: protein secretion, membrane protein insertion and Gram-negative outer-membrane biogenesis. The immediate impact in terms of the current project will lie in scientific advancement and the generation of new knowledge. The project will also present new hypothetical concepts that if proven to be true will have a major impact in our understanding of protein transport, and have important implication for the development of effective treatments against bacterial infections. An additional goal is to encourage a broader uptake of the technological applications we are helping to develop for exploitation in fundamental studies in both academic and commercial sectors.

The main areas of impact are:
1. Application and exploitation. While the proposed project is at a "pre-competitive" stage in terms of commercial exploitation, the knowledge generated will have an immediate benefit to both the National and International bioscience community (academic and commercial) in terms of understanding a fundamental process that spans the breadth of biology. The process is of fundamental importance for bacterial survival and certain complex components are specific to bacteria. The bacterial envelope and its biogenesis are particularly vulnerable to attack; its weakening by, for instance, antibiotics can be lethal. Therefore, the subject of this proposal is a particularly fertile area, with respect to the development of new antibiotics and for strategies against anti-microbial resistance (AMR). Therefore, in the medium term the work could lead to new approaches/ targets for antimicrobial drug development. The knowledge gained could support an ongoing work aimed towards a drug discovery programme in Bristol.

2. Development of new technology. Single molecule detection is emerging as important screening tool as demonstrated in Leeds by the development of sensitive methods to follow virus assembly and screen for anti-virals.

Both Leeds and Bristol have mechanisms in place to increase the impact of research and to exploit any commercialization.

3. Engagement. The benefits to the bioscience community are summarised above. The standard routes to information dissemination (e.g. pre-print submissions, papers in journals and presentations at conferences) will be used throughout the duration of the project. A more general benefit of our work to the UK stems from our commitment to public engagement. The PI and PDRAs routinely participate in public engagement activities, from school children to politicians, and for the promotion science to women and girls. The group will continue with public engagement activities throughout the course of the project, using work generated from the project to exemplify the importance of research.

The PIs also interact with pre-university students with the aim to excite them about the research process in order to encourage them to pursue a future in the high value field of research and development. The PIs will continue with these activities throughout the course of the project, using work generated from the project to exemplify the importance of research.

4. The critical collaboration proposed with the Tuma group in the Czech Republic, which will enhance the value of research in the UK and maintain the UK's scientific European research network, which post-BREXIT will be more important to maintain than ever before.

5. Staff training. The project will generate trained staff with desirable expertise in complex biochemical and biophysical analysis of membrane protein complexes that are involved in important bacterial activities. The researchers will be in demand in both the academic and commercial sectors. During the project, further development will be encouraged through attending courses in areas directly and indirectly related to their role as research scientists (e.g. management and leadership).
 
Description This work has culminated in the recent publication of a landmark paper in the EMBO journal, which made the cover:

J.A. Crossley, W.J. Allen, D.W. Watkins, T. Sabir, S.E. Radford, R. Tuma, I. Collinson, T. Fessl, Dynamic coupling of fast channel gating with slow ATP-turnover underpins protein transport through the Sec translocon, EMBO J. 43 (2024) 1-13. https://doi.org/10.1038/s44318-023-00004-1.

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.

We hope that this will be the first of a collection of follow up papers which probe the dynamic mechanism of both SecA and SecYEG during protein transport across the bacterial inner membrane.
Exploitation Route In the design of new strategies to subvert the bacterial protein transport machinery towards the design of antibiotics.
Sectors Education

Healthcare

Pharmaceuticals and Medical Biotechnology

 
Description Analysis of the mechanism of protein translocation by single molecule fluorescence with Profs Sheena Radford and Roman Tuma 
Organisation University of Leeds
Country United Kingdom 
Sector Academic/University 
PI Contribution Provision of expertise and material. Conducting in parallel ensemble analysis of protein transport machinery See joint BBSRC grants: Recently awarded: BB/T006889/1 (joint with BB/T008059/1) BB/N017307/1 (joint with BB/N015126/1) BB/I006737/1 (joint with BB/I008675/1)
Collaborator Contribution Single molecule expertise, experimental set up and data collection
Impact Yes, publications: Joel Crossley, Matthew A. Watson, Tomas Fessl, Daniel Watkins, Robin A. Corey, Tara Sabir, Sheena E. Radford, Ian Collinson, Roman Tuma. Energy landscape steering in SecYEG mediates dynamic coupling in ATP driven protein translocation. bioRxiv 793943; doi: https://doi.org/10.1101/793943. Submitted to JACS. Fessl T., Watkins D., Oatley P., Allen W.J., Corey R.A., Horne J., Baldwin S.A., Radford S.E., Collinson I. & Tuma R. (2018) Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife: 10.7554/eLife.35112 Allen, W. J., Corey, R. A., Oatley, P., Sessions, R. B., Baldwin, S. A., Radford, S. E., Tuma, R., and Collinson, I. (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 10.7554/eLife.15598 Deville, K., Gold, V. A. M., Robson, A., Whitehouse, S., Sessions, R. B., Baldwin, S. A., Radford, S. E., and Collinson, I. (2011) The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659-4669
 
Description Analysis of the mechanism of protein translocation by single molecule fluorescence with Profs Sheena Radford and Roman Tuma 
Organisation University of South Bohemia
Country Czech Republic 
Sector Academic/University 
PI Contribution Provision of expertise and material. Conducting in parallel ensemble analysis of protein transport machinery See joint BBSRC grants: Recently awarded: BB/T006889/1 (joint with BB/T008059/1) BB/N017307/1 (joint with BB/N015126/1) BB/I006737/1 (joint with BB/I008675/1)
Collaborator Contribution Single molecule expertise, experimental set up and data collection
Impact Yes, publications: Joel Crossley, Matthew A. Watson, Tomas Fessl, Daniel Watkins, Robin A. Corey, Tara Sabir, Sheena E. Radford, Ian Collinson, Roman Tuma. Energy landscape steering in SecYEG mediates dynamic coupling in ATP driven protein translocation. bioRxiv 793943; doi: https://doi.org/10.1101/793943. Submitted to JACS. Fessl T., Watkins D., Oatley P., Allen W.J., Corey R.A., Horne J., Baldwin S.A., Radford S.E., Collinson I. & Tuma R. (2018) Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife: 10.7554/eLife.35112 Allen, W. J., Corey, R. A., Oatley, P., Sessions, R. B., Baldwin, S. A., Radford, S. E., Tuma, R., and Collinson, I. (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 10.7554/eLife.15598 Deville, K., Gold, V. A. M., Robson, A., Whitehouse, S., Sessions, R. B., Baldwin, S. A., Radford, S. E., and Collinson, I. (2011) The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659-4669
 
Description Protein Biophysics of protein transport apparatus with Dr T. Fessl and Prof. R. Tuma 
Organisation University of South Bohemia
Country Czech Republic 
Sector Academic/University 
PI Contribution Provision of samples for biophysical analysis, especially for single molecule applications
Collaborator Contribution Biophysical analysis of protein transport apparatus, including single molecule applications
Impact Joel Crossley, Matthew A. Watson, Tomas Fessl, Daniel Watkins, Robin A. Corey, Tara Sabir, Sheena E. Radford, Ian Collinson, Roman Tuma. Energy landscape steering in SecYEG mediates dynamic coupling in ATP driven protein translocation. bioRxiv 793943; doi: https://doi.org/10.1101/793943. Submitted to JACS. Corey, R. A., Ahdash, Z., Shah, A., Pyle, E., Allen, W.J., Fessl, T., Lovett, J.E., Politis, A. and Collinson, I. (2019) ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery. eLife: 10.7554/eLife.41803 Fessl T., Watkins D., Oatley P., Allen W.J., Corey R.A., Horne J., Baldwin S.A., Radford S.E., Collinson I. & Tuma R. (2018) Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife: 10.7554/eLife.35112
Start Year 2018
 
Description The Brilliant club scholars programme 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact The Scholars Programme trains PGRs in teaching secondary school students about their research and the scientific method. The objective of the programme is to develop and deliver a series of tutorials (and final essay assignment) to a local secondary school class. The aim of this is to widen participation in higher education.
Year(s) Of Engagement Activity 2020,2021
URL https://thebrilliantclub.org/the-scholars-programme/