A New Route to high-Performance Functional Films on Polymeric Web

Lead Research Organisation: University of Oxford
Department Name: Materials


Functional films underpin many electronic and opto-electronic devices, including flat panel displays, OLED's, image sensors, thin film photovoltaic solar cells, etc. Of particular importance to these devices are transparent conductive oxide (TCO) films, such as indium tin oxide (ITO) and aluminium-doped zinc oxide (ZAO). The UK market for functional films is expected to rise to 23.4B by 2010. Further substantial gains in productivity would be made, and new markets opened up, if the devices could be deposited directly onto polymeric web in very large throughput reel-to-reel coaters. However, the deposition of TCO films onto webs poses many significant technological challenges. In comparison to glass, polymeric webs are relatively rough, tend to outgas significantly and are thermally sensitive. The latter point particularly poses a problem, because it is generally necessary to perform a post-deposition annealing process (typically at 500 degC) in order to optimise the optical and electrical properties of TCO materials.One potential solution to this problem is to deposit coatings using the newly developed technique of high powered impulse magnetron sputtering (HIPIMS). This process involves the application of very large power pulses to magnetron sputter cathodes for short periods of time. The peak pulse power can be in the megawatt range and the pulse duration is typically of the order of 80-160 micro seconds, at repetition rates in the range of 10s to 100s of Hz. Initial studies of the HIPIMS (also referred to as high power pulsed magnetron sputtering / HPPMS) system have shown that this intense pulse creates a high degree of ionization (up to 70% for titanium) of the sputtered species with this technique (in contrast to conventional magnetron sputtering, where usually less than 1% of the sputtered material is ionized).The degree of ionization of the sputtered species in HIPIMS is comparable to that produced in cathodic arc discharges; however, with HIPIMS macroparticles are not normally produced. Another important consideration is that, due to the very low duty cycles (~1%) and long off times, the total heat load to the substrate can be very significantly (5-10 times) lower than in conventional DC and pulsed DC sputtering. Thus, the potential for HIPIMS is to harness the high degree of ionization to produce films with significantly improved properties, whilst maintaining a suitably low (sub-150 degC) substrate bulk temperature, allowing a diverse range of substrate materials to be coated. The introduction of HIPIMS technology, therefore, has the potential to provide a step-change in the performance of functional films, such as TCO's, deposited onto polymeric webs. This project will offer the first opportunity to study this new, complex deposition process in detail in both a development-scale system at MMU and an industrial pilot scale reel-to-reel coater at Oxford University. An additional key element of the project will be a detailed study of the nature of the discharge. Plasma characteristics such as the spatial and temporal evolution of the concentrations and temperatures of the species and their power loading of the substrate will be determined using an array of time-resolved diagnostic tools and well developed optical imaging techniques. The ability to deposit fully dense TCO coatings with optimised properties onto flexible substrates would be a major breakthrough and would represent a significant advancement in web coating technology.
Description Application of HIPIMS sputtering to roll-to-roll deposition of oxides. Characterisation of the effect of deposition parameters on the mechanical, electrical conductivity and gas barrier properties of oxides, and their resulting topography on polymer substrates. Application of a low In content ITO to large-area deposition of transparent conductors.
Exploitation Route Wider use of low In ITO. Production of relatively smooth transparent conducting layers.
Sectors Aerospace, Defence and Marine,Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology

Description Novel methods for reactive sputtering of thin films onto polymer substrates
Amount £55,554 (GBP)
Funding ID Knowledge Transfer Secondment 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2011 
End 09/2012