Invited Renewal Proposal: EPSRC Fellowships in Manufacturing: Additive nanomanufacturing techniques for integrated device fabrication

Lead Research Organisation: University of Oxford
Department Name: Materials

Abstract

The United Nations University in Tokyo has estimated that an average 2 g silicon chip utilizes 1.6 kg of fossil fuels, 73 g of chemicals and 32 kg of water. This kind of waste is unprecedented in heavy manufacturing. For example, in car manufacturing the ratio of finished goods to waste is roughly equal. This is primarily because the nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. As dimensions become increasingly small, the additive layers are increasingly smaller. Hence more subtractive waste is generated (as efficiencies are not one-to-one with further size scaling). Innovations thus far in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions, where further scaling will not deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. Meanwhile in academia, considerable research into self-assembly of nanoscale particles has also been of interest. With the renewal of this fellowship, I intend to advance developments during the last four years, not only within my group, but worldwide, towards integration of two or more additive nanomanufacturing processes to create functional devices. This research is supported substantially by industrial partners, to the tune of £339,700, underlining the significance of the research in industry.

Planned Impact

EPSRC outlines in its strategic plan, the prosperity outcomes it seeks over the next 3 years, where it is specified that the future competitiveness and creativity of the UK economy will require the successful development of world-leading products, processes and technology based on the discovery and innovation in the mathematical and physical sciences, information and computing technologies, and engineering. The proposed research will lead to a healthier, resilient and more connected nation by enabling printing of electronic components on any surface, being able to eventually have a process that can be applied to biological systems at the very small scales, and by cutting the environmental costs of rapid prototyping at the nanoscale. Specifically, the fellowship extension will address this requirement by carrying out research in innovative, disruptive technologies, allow for Business innovation via digital transformation as all of the developed processes can be controlled digitally and also allow transformation to a sustainable society by cutting environmental waste of fabrication. Crucially it addresses a core need (Ambition P3 of EPSRC's "Productive Nation" outcomes of its delivery plan) to "make it local, make it bespoke" approaches. This fellowship intends to build processes and techniques that would allow this to happen at the nanoscale for the very first time in an integrated manner.

Publications

10 25 50
publication icon
Brückerhoff-Plückelmann F (2021) Chalcogenide phase-change devices for neuromorphic photonic computing in Journal of Applied Physics

publication icon
Carrillo S (2019) A Nonvolatile Phase-Change Metamaterial Color Display in Advanced Optical Materials

publication icon
Carrillo S (2021) System-Level Simulation for Integrated Phase-Change Photonics in Journal of Lightwave Technology

publication icon
Christensen D (2022) 2022 roadmap on neuromorphic computing and engineering in Neuromorphic Computing and Engineering

publication icon
Farmakidis N (2021) Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. in Microsystems & nanoengineering

 
Description This is an ongoing fellowship renewal with many new concepts and ideas that are currently being utilized for potential commercialization. As the grant matures, this section will be updated.
First Year Of Impact 2019
Sector Aerospace, Defence and Marine,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Leisure Activities, including Sports, Recreation and Tourism,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections,Security and Diplomacy
Impact Types Cultural,Societal,Economic

 
Description Microsoft EMEA Studentship
Amount £108,000 (GBP)
Organisation Microsoft Research 
Sector Private
Country Global
Start 01/2021 
End 01/2024
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation iNets South West
Country United Kingdom 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description Fun-Comp 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Interuniversity Micro-Electronics Centre
Country Belgium 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS)
Country France 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Thales Group
Country France 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Exeter
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description WAFT Industrial Partners 
Organisation BASF
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Centre for Process Innovation (CPI)
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation CreaPhys GmbH
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Eckersley O'Callaghan
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Fraunhofer Society
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Heliatek GmbH
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Kurt J Lesker Company
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Msolv Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Plasma App Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Pragmatic Printing Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation SONY
Country Japan 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Sharp Laboratories of Europe Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Swiss Center for Electronics and Microtechnology
Country Switzerland 
Sector Charity/Non Profit 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Pennsylvania
Country United States 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Title Tuneable Optical Coatings 
Description A new concept for tuneable optical coatings based on lossless phase change materials that show strong coupling between their structural and optical properties. 
IP Reference United Kingdom Patent Application No. 1908145.4 
Protection Patent application published
Year Protection Granted 2019
Licensed No
Impact Nothing yet.
 
Description 12th International Workshop on Materials Behaviour at the Micro and nano Scale, China 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description Artist in Residence Meadhbh O'Connor's Insight Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact On Mark Making: An artist's Impression from insitde Oxford's Bhaskaran Lab
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features/mark-making-artist-s-impression-inside-oxford-s-bhaskaran-lab?fbc...
 
Description ECOC 2020 - Virtual Workshop: Functional materials enable superior tensor cores to back propagation free photonic computing hardware 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion from industry/academic experts to spark discussion around the topic of Pathway to Bring Photonics in High Performance Computing: from Materials to Applications
Year(s) Of Engagement Activity 2020
URL https://ecoco2020.org/index.php/programme/sunday-workshops
 
Description ESA Science Coffee - Invited Talk to the Advanced Concepts Team 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Space Exploration needs new nanoengineering concepts. Followed by Q&A and discussion
Year(s) Of Engagement Activity 2021
URL https://www.esa.int/gsp/ACT/coffee/2021-12-10-%20Harish%20Bhaskaran/
 
Description E\PCOS 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited speaker, hosting the 2020 E\PCOS Conference
Year(s) Of Engagement Activity 2019
URL http://epcos2019.cea.leti.fr/Documents/Final%20program%20EPCOS2019.pdf
 
Description Engagement with Prime Minister of India Narendra Modi - Interaction with Indian-Origin Academics and Researchers - 2 October 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Presentation of research and engagement routes to the Prime Minister of India during a presentation to him of research of Academics and Researchers from around the UK. Regarding the importance of India with the development of research. Video published on You Tube - Harish Bhaskaran's presentation is from 1 hr 22mins into the video.
Year(s) Of Engagement Activity 2020
URL https://www.youtube.com/watch?v=jFVBe0IkaLo
 
Description FunComp Review Meetings x 3: Oxford, Belgium & Zurich (latter web based) 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion of current outcomes and progress, sharing of ideas for future development and direction
Year(s) Of Engagement Activity 2019,2020
 
Description Future Directions of Chalcogenides Research Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Facilitated discussions
Year(s) Of Engagement Activity 2019
 
Description Guest Lecture at EPFL: In-Memory Computing - An Optical Perspective 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact In-Memory Computing - An Optical Perspective - Q&A Session afterwards.
Year(s) Of Engagement Activity 2021
 
Description Hosted Conversations in Photonics Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the Conversations in Photonics Workshop, with invited speakers the purpose of the workshop was to spark questions and debate.
Year(s) Of Engagement Activity 2021
 
Description Hosted the online European Phase-Change & Ovonic Symposium 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the online conference. Over 200 attendees,13 invited speakers, 24 oral presentations, 37 posters.
Year(s) Of Engagement Activity 2021
URL https://epcos2021.materials.ox.ac.uk/
 
Description In-memory signal processing and computing based on the integrated phase-change photonic platform Presented in SPIE Optics & photonics August 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact It is a research dissemination for the photonic society, and discussed with experts and postgraduates students with the similar research fields. It is also a dissemination to the public and industry for better understanding of our work.
Year(s) Of Engagement Activity 2020
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11469/114690H/In-memory-signal-pro...
 
Description Integrated Photonics Research, Silicon and nanophotonics (IPR) Symposium: Machine Learning with Photonic Systems II - presentation 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of latest research to experts from both academia and industry, followed by discussion.
Year(s) Of Engagement Activity 2021
 
Description Invited Lecture at St Paul's Girls School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact Inted lecture as part of the Friday Lecture Programme, requested following a previous Lecture given to the Science Society.
Year(s) Of Engagement Activity 2021
 
Description Invited Talk at International Conference on Optical MEMS and Nanophotonics - 2021 Summer School, IEEE Photonics Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited Talk: Non-von Neumann photonic computing for machine learning and artificial intelligence, as part of the Reconfigurable Photonic Computing.
Year(s) Of Engagement Activity 2021
 
Description Invited Talk: 2021 Intelligence in Chip: Tomorrow of Integrated Circuits (ICTIC) - IEEE CASS Seasonal School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of talk: Photonic Neural Networks, followed by questions and discussion.
Year(s) Of Engagement Activity 2021
URL https://ic-tic.org/
 
Description MIT Colloquium Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited Colloquium sparked discussions and questions.
Year(s) Of Engagement Activity 2019
 
Description MME 2019 Conference, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Hosted the well established European annual workshop on microtechnology.
Year(s) Of Engagement Activity 2019
 
Description MRS Fall Meeting Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Keynote speaker: Optoelectronic Applications of Phase Change Materials, faciliated discussion
Year(s) Of Engagement Activity 2019
URL https://www.mrs.org/fall2019/activities-events/other/electronics-and-photonics-workshop
 
Description Media Interview BBC World Service Radio: Digital Planet 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Following publication of paper: Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett1, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
published in Science Advances, 29 November 2019
Year(s) Of Engagement Activity 2019
 
Description Nature Publication: Research Highlight in response to press release 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Responded to request for information for a Research Highlight Article regarding paper Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality published in Science Advances, 29 November 2019.
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
Year(s) Of Engagement Activity 2019
 
Description OPIC 2021 ICNN Keynote Speaker: In-memory Photonic Computing Approaches to Photoinc Tensor Cores 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Invited Talk given at ICNN 2021, part of the Optics & phtoonics International Congress 2021. Virtual presentation which presented knowledge and invited discussion.
Year(s) Of Engagement Activity 2021
 
Description Optical MEMS and Nanophotonics (OMN) Summer School, Invited Talk: Non-von Neumann photonic computing for machine learning and artificial Intelligence 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited speaker for the Reconfigurable Photonic Computing portion of the Optical MEMS and Nanophotonics (OMN) Summer School. Presentation of research, followed by Q&A and discussion.
Year(s) Of Engagement Activity 2021
URL https://omn2021.org/speakers/
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Mimicking biphasic synapses on a photonic platform
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Demonstration of over 108 cycling endurance in the nonvolatile photonic memory cells
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Electrically Programmable Integrated Plasmonic Phase-Change Memories with Optoelectronic Readout
Year(s) Of Engagement Activity 2021
 
Description Oxford Prospects Programme Summer School Lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact Lecture and discussion
Year(s) Of Engagement Activity 2021
 
Description PhD Workshop at Microsoft Research Cambridge 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Presentation and discussions
Year(s) Of Engagement Activity 2019
 
Description Photonics Conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Conversations in Oxford - Future of Integrated Photonics in Computing, attracted global keynote speakers, and stemmed the beginning of additional events to continue to the conversation.
Year(s) Of Engagement Activity 2019
URL http://mme2019.manucodiata.org/index.php/future-of-photonic-computing
 
Description Poster Presentation at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Dynamic modulation of low-loss phase change materials on photonic waveguides
Year(s) Of Engagement Activity 2021
 
Description Presentation/Seminar: Thales Group, Paris, 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Title: Photonics using functional materials for computing

Seminar Abstract:  Machine Learning and Artificial Intelligence would be possible without the fantastic advances in electronics, but surprisingly, new techniques and architectures for hardware engineering of such devices has only recently become an important topic. In this talk, I shall talk about how both device concepts and new materials can bring about a step change in this field. Photonics and Optoelectronics will become mainstream in the next few years, and I hope to convince you that whatever route these technologies take, a class of materials known as phase change materials will play a key role in their commercialization. I shall give an overview of these with a view towards their near-term applications in displays, and their medium-to-long-term potential in integrated photonic memories to photonic machine-learning hardware components, with a few of our recent results in this area.

To encourage discussion.
Year(s) Of Engagement Activity 2021
 
Description Press Release announcing Phoenics Project 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Breaking Moore's Law: New Photonic computing project aims to speed up artificial intelligence computing power to petascale processing levels
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/breaking-moore2019s-law-new-photonic-computing-project-aims-to...
 
Description Press Release: Light-carrying chips advance machine learning 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press release organised and sent out by all institutions involved to a global media base. Online coverage.
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/2021-01-07-light-carrying-chips-advance-machine-learning
 
Description Press Release: Nanoscale films of a pure metal exist in two stable optically distinguishable states 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press release distributed to international press list regarding paper publication.
Year(s) Of Engagement Activity 2021
 
Description Press Release: Science Advances Article Announcement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press interest resulting in radio and magazine interviews.
Year(s) Of Engagement Activity 2019
 
Description Press release announcing paper publish in ACS Photonics 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact New adaptable smart window coating could help heat or cool a home and save energy
Press release picked up in many news outlets including International, consumer, trade, science news sites and print.
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/2022-02-07-new-adaptable-smart-window-coating-could-help-heat-or-cool-home...
 
Description Press release announcing paper published in Journal of Microsystems and nanoengineering 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact The Art of Calligraphy Inspires new nanomanufacturing technique
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/the-art-of-calligraphy-inspires-new-nanomanufacturing-techniqu...
 
Description QuEEN Advisory Board Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description SPIE Conference Presentation, Baltimore April 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited presentation.
Year(s) Of Engagement Activity 2019
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10982/109820P/Phase-change-photoni...
 
Description St Paul's Girls School - Physics Society Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact Invited to give a presentation to the St Paul's Girl's School Physics Society. A Q&A panel session followed with great interest.

"Thank you so much for taking the time to give us such an engaging talk on Wednesday! It was fascinating to hear about natural resonance frequencies, nanobridges, NEMs and more - using the guitar really helped us understand and visualise these concepts which take place on a nanoscale. Others told me how much they enjoyed learning about how crucial nanotechnology is in devices we use all the time, and your emphasis on the need for creativity in STEM was truly inspiring.
I imagine how busy you must be and am very grateful that you were able to give us an insight into nanoengineering, a topic I'm sure will only increase in relevance!
With many thanks from all of us at St Paul's,"
Year(s) Of Engagement Activity 2021
 
Description The Future of Materials for Low Loss Electronics - HRS Roadmapping Workshops April 2020 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Discussion and development of a roadmap that will be coming out in due course. ROYCE.
Year(s) Of Engagement Activity 2020
 
Description Towards brain-inspired photonic computing 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Presentation of findings from the paper: Photonics for artificial intelligence and neuromorphic intelligence, in a webinar format with questions and discussions after.
Year(s) Of Engagement Activity 2020
URL https://dutchphotonicsevent.nl/johannes-feldmann/
 
Description Ultra SRD (Innovate UK) Progress Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description Why Space? Collaboration and Discussion 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Submission of a paper for the Why Space? The Opportunity for Health & Life Science Innovation initiative. An opportunity for experts to reflect on what opportunities they see for research and innovation in their area from utilising space and microgravity conditions for discovery reseach and/or terrestial benefit. UK Space Labs
Year(s) Of Engagement Activity 2020
 
Description Yu Shu's Science Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact New Water-based Approach to manufacturing Semiconductors
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features?search=Yu+Shu&field_news_classification_tid=All