MOSQUITO: MObile Spin-based QUantum Information sTOrage
Lead Research Organisation:
Heriot-Watt University
Department Name: Sch of Engineering and Physical Science
Abstract
Devices exploiting the principles of quantum mechanics can revolutionize the way we communicate, compute and measure. For example, communication links based on the exchange of single photons can generate secret encryption keys, detecting the presence of possible eavesdroppers. As for classical communication networks, quantum networks require local memories and processing units to store and process information.
MOSQUITO investigates the physics related to the demonstration of a portable multi-qubit quantum networking node based on a compact and scalable silicon carbide (SiC) device. The device enables efficient storage of optical quantum states onto nuclear spins at cryogenic temperature, preserves them up to ambient conditions and is accessible at room temperature.
The envisioned integrated device operates in the near-infrared optical region (close to telecom wavelength) and embeds for the first time spintronic, electronic and photonic functionalities on a single platform compatible with standard industrial processing. This break-through is enabled by the unique properties of silicon carbide, which features colour centres with excellent spin coherence, a bright spin/photon interface and established growth and nano-fabrication techniques.
MOSQUITO will open the way to integrated quantum repeaters compatible with telecom networks. Additionally, it will lay the foundations for portable quantum networking nodes, a technology that could facilitate real-world deployment of quantum-enhanced communication security.
MOSQUITO investigates the physics related to the demonstration of a portable multi-qubit quantum networking node based on a compact and scalable silicon carbide (SiC) device. The device enables efficient storage of optical quantum states onto nuclear spins at cryogenic temperature, preserves them up to ambient conditions and is accessible at room temperature.
The envisioned integrated device operates in the near-infrared optical region (close to telecom wavelength) and embeds for the first time spintronic, electronic and photonic functionalities on a single platform compatible with standard industrial processing. This break-through is enabled by the unique properties of silicon carbide, which features colour centres with excellent spin coherence, a bright spin/photon interface and established growth and nano-fabrication techniques.
MOSQUITO will open the way to integrated quantum repeaters compatible with telecom networks. Additionally, it will lay the foundations for portable quantum networking nodes, a technology that could facilitate real-world deployment of quantum-enhanced communication security.
Planned Impact
Short-term (< 5years): the semiconductor industry
On the shorter term, this project will mostly impact the semiconductor industry. First of all, my work will improve the understanding of the structure of defects that affect the performance of microelectronic devices. While this is currently studied by theoretical simulations and measurements on large ensembles of defects, my work on single-defect optical spectroscopy are already providing novel information that is averaged out in ensemble experiments. As an example, the long debate in the SiC community about the exact structure of the silicon vacancy defect has only been settled thanks to our recent studies on individual vacancies.
This scientific goals of the project can only be reached by integrating, for the first time, photonic, electronic and spintronic functionalities on a single quantum device. This will require tackling several technological challenges that will push further what can be achieved in a material platform of wide industrial interest. For example, the research line on nano-photonic functionalities can provide new insights and ideas that can find applications also in "classical" photonics. Or, my proposed work on p-i-n junctions operating at cryogenic temperature is relevant for the power electronics effort aimed at integrating power devices with superconducting elements. Additionally this work will drive materials scientists to developp high-purity material, where spin coherence is not limited by interaction with unwanted defects and impurities.
Finally, PhD students and post-docs working on the project will acquire expertise in semiconductor physics, optics, electron spin resonance, high-speed electronics, cryogenics, programming and data analysis. This will help create a skilled work-force for academia and high-tech industry.
Medium-term (5-15 years): portable quantum networking links
In the medium term, portable quantum networking links will facilitate the deployment of secret quantum encryption keys into the real-world, including locations which do not include a specialized fiber link. For example, one could envision encoding photonic quantum states on the portable node in a cryogenic docking station and then physically transporting the device to a different location, while preserving the established entanglement. This can have a ground-breaking impact in extending the range of quantum communication,
While focusing on quantum networking, the techniques developed within this project may in parallel impact the field of spin-based quantum sensing. Single spins are the smallest possible magnetic field sensors, and experiments with nitrogen-vacancy centres in diamond are already providing high measurement sensitivity at the ultimate limits of spatial resolution, for materials science and biological applications.
Long-term (>20 years): global satellite-based quantum communication
The output of this project, integrated with the small low-power cryo-coolers developed by the Science & Technology Facilities Council (with Honeywell-Hymatic) will provide the basis for satellite-based quantum repeaters. Such devices will dramatically extend the range of secure quantum communication, potentially connecting any two locations in the world by combining space optical links, quantum memories and quantum error correction.
The general public
Throughout the activities outlined in "Pathways to Impact", the public will gain awareness of the latest results in quantum physics, the promises of quantum technology and the impact of my own work. This will set them in a position to make conscious informed choices regarding why these activities are worth the taxpayer support.
On the shorter term, this project will mostly impact the semiconductor industry. First of all, my work will improve the understanding of the structure of defects that affect the performance of microelectronic devices. While this is currently studied by theoretical simulations and measurements on large ensembles of defects, my work on single-defect optical spectroscopy are already providing novel information that is averaged out in ensemble experiments. As an example, the long debate in the SiC community about the exact structure of the silicon vacancy defect has only been settled thanks to our recent studies on individual vacancies.
This scientific goals of the project can only be reached by integrating, for the first time, photonic, electronic and spintronic functionalities on a single quantum device. This will require tackling several technological challenges that will push further what can be achieved in a material platform of wide industrial interest. For example, the research line on nano-photonic functionalities can provide new insights and ideas that can find applications also in "classical" photonics. Or, my proposed work on p-i-n junctions operating at cryogenic temperature is relevant for the power electronics effort aimed at integrating power devices with superconducting elements. Additionally this work will drive materials scientists to developp high-purity material, where spin coherence is not limited by interaction with unwanted defects and impurities.
Finally, PhD students and post-docs working on the project will acquire expertise in semiconductor physics, optics, electron spin resonance, high-speed electronics, cryogenics, programming and data analysis. This will help create a skilled work-force for academia and high-tech industry.
Medium-term (5-15 years): portable quantum networking links
In the medium term, portable quantum networking links will facilitate the deployment of secret quantum encryption keys into the real-world, including locations which do not include a specialized fiber link. For example, one could envision encoding photonic quantum states on the portable node in a cryogenic docking station and then physically transporting the device to a different location, while preserving the established entanglement. This can have a ground-breaking impact in extending the range of quantum communication,
While focusing on quantum networking, the techniques developed within this project may in parallel impact the field of spin-based quantum sensing. Single spins are the smallest possible magnetic field sensors, and experiments with nitrogen-vacancy centres in diamond are already providing high measurement sensitivity at the ultimate limits of spatial resolution, for materials science and biological applications.
Long-term (>20 years): global satellite-based quantum communication
The output of this project, integrated with the small low-power cryo-coolers developed by the Science & Technology Facilities Council (with Honeywell-Hymatic) will provide the basis for satellite-based quantum repeaters. Such devices will dramatically extend the range of secure quantum communication, potentially connecting any two locations in the world by combining space optical links, quantum memories and quantum error correction.
The general public
Throughout the activities outlined in "Pathways to Impact", the public will gain awareness of the latest results in quantum physics, the promises of quantum technology and the impact of my own work. This will set them in a position to make conscious informed choices regarding why these activities are worth the taxpayer support.
Organisations
- Heriot-Watt University (Lead Research Organisation)
- University of Stuttgart (Collaboration)
- University of Oxford (Collaboration)
- University of Warwick (Collaboration)
- Harvard University (Project Partner)
- Newcastle University (Project Partner)
- Linkoping University (Project Partner)
- University of Warwick (Project Partner)
- Science and Technology Facilities Council (Project Partner)
People |
ORCID iD |
| Cristian Bonato (Principal Investigator / Fellow) |
Publications
Andres-Penares D
(2021)
Optical and dielectric properties of MoO3 nanosheets for van der Waals heterostructures
in Applied Physics Letters
Arshad M
(2024)
Real-time adaptive estimation of decoherence timescales for a single qubit
in Physical Review Applied
Baek H
(2020)
Highly energy-tunable quantum light from moiré-trapped excitons.
in Science advances
Bekker C
(2023)
Scalable fabrication of hemispherical solid immersion lenses in silicon carbide through grayscale hard-mask lithography
in Applied Physics Letters
Brotons-Gisbert M
(2019)
Spin-layer locking of interlayer excitons trapped in moiré potentials
Brotons-Gisbert M
(2020)
Spin-layer locking of interlayer excitons trapped in moiré potentials
in Nature Materials
Budakian R
(2023)
Roadmap on Nanoscale Magnetic Resonance Imaging
| Description | This project focuses on demonstrating a quantum repeater architecture based on single spins in silicon carbide, a semiconductor of wide technological interest for micro-electronics. The quantum repeater holds the promise to increase the link distance for quantum communication, opening the way to secure networking. With this project, we have achieved several milestones towards this goal, including: 1) demonstration of high-fidelity spin initialisation and control for single defects in silicon carbide, by resonant laser excitation at low temperature. High-fidelity spin control is essential to implement high-quality quantum logic gates for the quantum repeater. 2) demonstration of charge-state control through a micro-electronic device. By using a p-I-n diode structure, we managed to control the number of electrons associated to the defect. This is crucial to implement a quantum memory protected against environmental noise 3) demonstration of ultra-narrow inhomogeneous broadening for vanadium spin centres in SiC, better than any other spin centre in the literature. 4) demonstration of marker-free registration of single quantum emitters to phtoonic structures In parallel we have also investigate novel quantum emitters (related to vanadium impurities) in silicon carbide, which emit in the telecommunication range |
| Exploitation Route | Our data is very helpful for anybody working on quantum technology based on spins in silicon carbide. In addition, the technqiues we use can be easily extended to other spin-based quantum systems. |
| Sectors | Digital/Communication/Information Technologies (including Software) Electronics |
| Description | We have developed a novel fabrication process to create 2.5D microstructures in SiC using grayscale lithography. By using a double-mask process and direct laser writing, we are able to fabricate structures such as hemispherical solid immersion lenses. We have applied for a patent for the process. We are discussing with optical communication companies how this process could impact their products. In addition, we have started discussions with several SiC manufacturers, such as Infineon, Danfoss, SiCrystal, Nascent Semiconductors, ST Microelectronics. This discussions resulted in a joint InnovateUK project with Nascent Semiconductor about quantum sensors in SiC, and the submission of two EU EIC Pathfinder projects (one including Infineon, one including ST Microelectronics). |
| Sector | Digital/Communication/Information Technologies (including Software) |
| Impact Types | Economic |
| Description | Connectorising Integrated Quantum Photonics Devices |
| Amount | £300,000 (GBP) |
| Funding ID | 78757 |
| Organisation | Innovate UK |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2021 |
| End | 03/2024 |
| Description | Harnessing Quantum Defects For Magnetic Measurements |
| Amount | £431,918 (GBP) |
| Funding ID | RPG-2019-388 |
| Organisation | The Leverhulme Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 05/2020 |
| End | 05/2024 |
| Description | INTEGRATED QUANTUM NETWORKS (IQN) RESEARCH HUB |
| Amount | £21,272,349 (GBP) |
| Funding ID | EP/Z533208/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 12/2024 |
| End | 11/2029 |
| Description | Normating colour-centre-based quantum sensing technology towards industrial application and standards |
| Amount | £2,000,000 (GBP) |
| Organisation | European Association of National Metrology Institutes (EURAMET) |
| Sector | Charity/Non Profit |
| Country | Germany |
| Start | 03/2024 |
| End | 03/2027 |
| Description | QS-Precision Inertial Navigation (QS-PIN) |
| Amount | £120,000 (GBP) |
| Funding ID | 10086180 |
| Organisation | Innovate UK |
| Sector | Public |
| Country | United Kingdom |
| Start | 08/2023 |
| End | 11/2023 |
| Description | QuSPARC: Quantum technology with a spin-photon architecture for thousand-qubit chipsets at telecom wavelengths |
| Amount | € 3,000,000 (EUR) |
| Funding ID | 101186889 |
| Organisation | European Commission |
| Sector | Public |
| Country | Belgium |
| Start | 03/2025 |
| End | 03/2028 |
| Description | Quantum Emitters for Telecommunication in the O-Band |
| Amount | € 2,990,576 (EUR) |
| Funding ID | 862721 |
| Organisation | European Commission |
| Sector | Public |
| Country | Belgium |
| Start | 09/2019 |
| End | 09/2022 |
| Title | Datasets for "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide" |
| Description | Datasets supporting the paper: "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide" by P. Cilibrizzi et al. The files are named as date_time_+"PLE_scan_"+frqInitial_polarisation_frqEnd_signal. For example, the file "2022-12-20_17_07_PLE_scan_234420059_MHz_sigma_P_234419877_MHz_X" is taken on teh 20th of December 2022, starting at 17:07pm. The wavelength of the excitation laser is measured by the wavemeter at the beginning of data acquisition to be 234,420,059 MHz. At the end of the map, the laser wavelength is 234,419,877 MHz. The quantity stored in the file is "X", corresponding to the values of the x-axis for the spatial scan. Possible quantities areX: values of the x-axis for the spatial scan (in microns)Y: values of the y-axis for the spatial scan (in microns)Z: number of photon counts |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| Impact | The dataset was deposited online two months ago, so it is a bit early to estimate its impact. |
| URL | https://zenodo.org/doi/10.5281/zenodo.10066455 |
| Title | Datasets for "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide" |
| Description | Datasets supporting the paper: "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide" by P. Cilibrizzi et al. The files are named as date_time_+"PLE_scan_"+frqInitial_polarisation_frqEnd_signal. For example, the file "2022-12-20_17_07_PLE_scan_234420059_MHz_sigma_P_234419877_MHz_X" is taken on teh 20th of December 2022, starting at 17:07pm. The wavelength of the excitation laser is measured by the wavemeter at the beginning of data acquisition to be 234,420,059 MHz. At the end of the map, the laser wavelength is 234,419,877 MHz. The quantity stored in the file is "X", corresponding to the values of the x-axis for the spatial scan. Possible quantities areX: values of the x-axis for the spatial scan (in microns)Y: values of the y-axis for the spatial scan (in microns)Z: number of photon counts |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/doi/10.5281/zenodo.10066454 |
| Title | Real-time frequency estimation of a qubit without single-shot-readout |
| Description | Dataset for figures 3a, 3b and 4b in our manuscript. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| Impact | The dataset has been downloaded 25 times, so other researchers are interested in the dataset. We have not been directly contacted about the datasets |
| URL | https://zenodo.org/record/7735975 |
| Title | Real-time frequency estimation of a qubit without single-shot-readout |
| Description | Dataset for figures 3a, 3b and 4b in our manuscript. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7735976 |
| Description | Collaboration on low-temperature spectroscopy of single VSi defects in SiC |
| Organisation | University of Stuttgart |
| Country | Germany |
| Sector | Academic/University |
| PI Contribution | The goal of this collaboration is to create a synergy between my expertise on low-temperature spectroscopy of defects and Stuttgart's expertise on spins in SiC. While I have extensive expertise on diamond, the SiC platform was new to me. I participated to experimental measurements in Stuttgart and my contribution has been extremely important in modelling spin dynamics for a S=3/2system with small splitting between the transitions. |
| Collaborator Contribution | My partners in Stuttgart contribute by enabling me to perform experiments that I could not perform at Heriot-Watt, due to the lack of a dedicated cryogenic setup. |
| Impact | One paper published: R. Nagy et al, "Quantum properties of dichroic silicon vacancies in silicon carbide", Physical Review Applied 9 (3), 034022 (2018) One paper under review in Nature Communications: r. Nagy et al, "High-fidelity spin and optical control of single silicon vacancy centres in silicon carbide", arxiv:1810.10296 (2018) One more paper is currently being written |
| Start Year | 2017 |
| Description | Fabrication of SiC micro-photonic structures |
| Organisation | University of Oxford |
| Department | Oxford Hub |
| Country | United Kingdom |
| Sector | Academic/University |
| PI Contribution | We have developed arrays of solid immersion lenses in Silicon Carbice by a technique we have developed (double-mask grayscale lithography), and we have further demonstrated marker-free registration of single quantum emitters |
| Collaborator Contribution | Our partners at Oxford university have performed the emitters creation a sample fabricated with our novel procedure |
| Impact | We have a UK patent on this topic, and we have recently submitted a paper to Nanoletters (https://arxiv.org/abs/2502.15533) |
| Start Year | 2023 |
| Description | Laser-writing of spin-defects in SiC |
| Organisation | University of Oxford |
| Department | Department of Engineering Science |
| Country | United Kingdom |
| Sector | Academic/University |
| PI Contribution | The goal of this work is to demonstrate increased spin readout efficiency by improving optical collection from spin centres in SiC. This will be done by creating solid immersion lenses registered on top of emitters. My team will create the solid immersion lenses and perform optical and spin characterisation. |
| Collaborator Contribution | The Oxford team will create the spin defects by creating vacancies with short intense laser pulses, tuning the parameters to try to engineer different type of colour centres. |
| Impact | Collaboration is under way, we expect outcomes in the coming months |
| Start Year | 2021 |
| Description | Spin control in SiC electronic devices |
| Organisation | University of Warwick |
| Department | School of Engineering |
| Country | United Kingdom |
| Sector | Academic/University |
| PI Contribution | Our contribution is in the design of SiC opto-electronic devices integrating single-spin quantum emitters. Diode devices have been fabricated at Warwick, and we are currently characterising them |
| Collaborator Contribution | Our collaborators at Warwick design and fabricate the required micro-electronic devices, building on their expertise in SiC microelectronics and power electronics. |
| Impact | Not outputs area vailable yet, as we are still developing samples together |
| Start Year | 2021 |
| Title | METHOD OF MANUFACTURING THREE-DIMENSIONAL MICROSTRUCTURES |
| Description | A method of etching a three-dimensional microstructure in a substrate comprising: providing a substrate (100); depositing an inorganic mask layer (110) on the surface of the substrate, wherein the inorganic mask layer has a different composition from the substrate; providing a polymer-based photoresist layer (120) on the inorganic mask layer (110); forming a first three-dimensional lithographic mask (122) in the polymer-based photoresist layer (120) comprising exposing the polymer-based photoresist layer with patterned illumination (L) and developing the polymer-based photoresist layer; etching the photoresist mask (122) and the inorganic mask layer (110) with a first reactive ion etching process (R1) to produce a second three-dimensional lithographic mask (112) in the inorganic mask layer (110); and etching the second three-dimensional lithographic mask (112) and the substrate (100) with a second reactive ion etching process (R2) to produce a three-dimensional microstructure (102) in the substrate. |
| IP Reference | WO2024141756 |
| Protection | Patent / Patent application |
| Year Protection Granted | 2024 |
| Licensed | No |
| Title | Software for Adaptive Control |
| Description | The software package simulates adaptive Bayesian inference to learn parameters of quantum systems (e.g. for quantum sensing), and controls adaptive quantum sensing experiments in the lab |
| Type Of Technology | Software |
| Year Produced | 2023 |
| Impact | The software enabled us to perform several adaptive sensing experiments (e.g. Phys. Rev. Applied 21, 024026), also in collaboration with groups overseas (Quantum Science and Technology 8 (3), 035017) |
| Description | Engaging in Nitrogen Vacancy Diamond Quantum Sensing for Healthcare Applications |
| Form Of Engagement Activity | A talk or presentation |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Industry/Business |
| Results and Impact | Talk at a InnovateUK webinar event about quantum sensing for the healthcare industry |
| Year(s) Of Engagement Activity | 2024 |
| URL | https://iuk.ktn-uk.org/events/nitrogen-vacancy-diamond-quantum-sensing-for-healthcare-applications/ |
| Description | Talk at Quantum HEalthcare summit |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Professional Practitioners |
| Results and Impact | I gave a talk at a summit about quantum technologies applications in healthcare. The audience consisted of quantum scientistics, clinicians, biomedical researchers, NHS personnel, biomedical industry |
| Year(s) Of Engagement Activity | 2024 |
| URL | https://quantum-tech-alliance.co.uk/2025/01/13/quantum-healthcare-summit/ |