📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Singularities, symplectic topology and mirror symmetry

Lead Research Organisation: University of Cambridge
Department Name: Pure Maths and Mathematical Statistics

Abstract

Symplectic geometry is a rapidly developing field, with tools drawn from many different areas of mathematics. Modern geometry studies manifolds, smooth objects that at small enough scale look like the standard space of a fixed dimension. For instance, the surface of a ball is a 2D-manifold, standard space-time is a 4D-manifold, and the parameter space for a biological experiment might be an 18D-manifold. Symplectic manifolds are equipped with an extra structure that generalises conservation laws from classical mechanics. This makes them the natural formal framework for studying orbits of satellites or space probes. Also, some models in string theory, a branch of physics, allow any symplectic manifold in lieu of space-time. Duality ideas in physics have led to mirror-symmetry, a booming field that relates symplectic geometry with a very different looking part of mathematics: algebraic geometry, which studies solutions of polynomial equations in several variables.

This project is guided by the major open question: `What are the transformations (that is, global symmetries) of a symplectic manifold?' By transformation, we mean a rule for taking each point to another, which is smooth (no breaks), invertible (you can go backwards), and preserves the additional symmetries.

We don't understand symplectic transformations well: for a lot of spaces, the one real source is something called Dehn twists. Let me describe these for 2D surfaces. (2D surfaces are symplectic if they have orientations: the surface of a ball or of an inner tube does, a Mobius strip does not.) Start with a closed curve without self-intersections - for instance, a circle around the thin part of an inner tube. Cut the surface open along it: the inner tube is now a long annulus, with two boundary components, each a circle. Twist each of the boundaries to the right by 180 degrees and glue the edges together again. You have got the same surface back! This transformation is a Dehn twist. Circles on surfaces are 1D-spheres, and in general, we can define Dehn twists analogously in higher dimensions, by using higher dimensional spheres inside symplectic manifolds - for instance, copies of the usual sphere (the surface of a ball) in four-dimensional symplectic manifolds.

In 2D, all transformations can be decomposed into sequences of twists. A major goal of the project is to show that the higher-dimensional situation can be radically different, by constructing large families of new examples of transformations, inspired by mirror symmetry. These translate to a different sort of transformation in the world of algebraic geometry, where we propose to settle questions of independent interest.

A long-term goal is to compare dynamical properties of transformations of surfaces with the ones in higher dimensions. For instance, Dehn twists on surfaces have linear dynamics: the number of fixed points grows linearly with iteration. However, a generic surface transformation, called a pseudo-Anosov map, has exponential dynamics. For large families of examples, we will study the possible growth-rates of fixed points of transformations, and whether there is a generic behaviour.

Many of the objects that will be studied in the project arise naturally in singularity theory, a field tied to the parts of mathematics that explain discontinuities and abrupt changes - for instance, the cuspy caustic curve that appears when light shines through water. We also propose to use ideas from symplectic geometry to study classical structural questions about spaces of deformations of generalised caustics.

Lots of other geometric structures enter the project too: for instance, braid groups, which are mathematical formalisations of the braids you can make with hair or ribbons; and Coxeter groups, which are transformations of space generalising the ones you can obtain from reflections in configurations of (physical, light-reflecting) mirrors.

Publications

10 25 50

publication icon
Keating AM (2024) Symplectomorphisms and spherical objects in the conifold smoothing in Compositio Mathematica

publication icon
Laplante-Anfossi G (2025) Steenrod operations via higher Bruhat orders in Proceedings of the London Mathematical Society

 
Description Work on the research objectives of the award is ongoing: we are currently in year 2 of 4 for the award. As set out in the Case for Support, the project had three overall research objectives (A, B and C), each divided into concrete subobjectives.
- Major parts of Objective A have been completed in their entirety, with collaborator Prof. Paul Hacking. In particular, we have constructed the "new symplectic transformations inspired by mirror symmetry" which were discussed in the general audience abstract. Moreover, we have extended the scope of the Objective thanks for more recent research results in mirrror symmetry, for some spaces called "K3 surfaces" which are important examples in algebraic geometry.
- Objective B is the object of ongoing joint work with the project PDRA (Dr. Nicholas Williams), who started in October 2024. We have encouraging preliminary results but no papers yet.
- Objective C contains several questions about "dynamical" properties of symplectic transformations -- for instance, how fixed points grow under iterations. One of these questions was settled in its entirety in the joint article with Dr. Abigail Ward (which in-facts enlarges the question by re-casting it in a "universal" framework).
Exploitation Route The research results have had a very positive reception from the community, including many requests to present the work. It has also been used by others in their work, as demonstrated by publically available citation data.
Sectors Education

 
Description ERC grant (held for 12 months while EPSRC award suspended)
Amount € 121,108 (EUR)
Funding ID SingSymp ERC-2021-STG 
Organisation University of Vienna 
Sector Academic/University
Country Austria
Start 06/2023 
End 06/2024
 
Description FSMP Distinguishe Professor visitor funding
Amount € 9,200 (EUR)
Organisation Paris Mathematical Sciences Foundation 
Sector Charity/Non Profit
Country France
Start 02/2023 
End 04/2023
 
Description Research Membership for Fall 2022 "Floer homotopy theory" program
Amount $16,000 (USD)
Organisation Mathematical Sciences Research Institute 
Sector Charity/Non Profit
Country United States
Start 07/2022 
End 12/2023
 
Description Gorsky 
Organisation University of Hamburg
Department Hamburg Observatory
Country Germany 
Sector Academic/University 
PI Contribution Collaboration with Mikhail Gorsky. To date we have completed one project on maximal green sequences. The project arose from discussions between the Team Member and the collaborator. We are working on a follow-up paper.
Collaborator Contribution Equal collaboration.
Impact Preprint at this arXiv link: https://arxiv.org/abs/2301.08681
Start Year 2020
 
Description Hacking 
Organisation University of Massachusetts Amherst
Country United States 
Sector Academic/University 
PI Contribution This is a reseach collaborator with Prof. Paul Hacking at UMass Amherst. He was a named proposed collaborator in the EPSRC proposal. We are collaborating on parts of Objective A from the research proposal, including some exciting developments which go beyond what was hoped for in Objective A. Loosely, the project is in the area of homological mirror symmetry; this requires technical expertise in two different areas of geometry & topology: symplectic topology and algebraic geometry. I contribute the expertise in symplectic geometry (and we work jointly at the interface).
Collaborator Contribution Prof. Hacking contributes the expertise in algebraic geometry (and we work jointly at the mirror symmetry interface).
Impact Three articles to date: Homological mirror symmetry for projective K3 surfaces https://arxiv.org/abs/2503.05680 Symplectomorphisms of mirrors to log Calabi-Yau surfaces https://arxiv.org/abs/2112.06797 (submitted) Homological mirror symmetry for log Calabi-Yau surfaces https://arxiv.org/abs/2005.05010, accepted, Geometry & Topology Additionally, several week-long graduate summer schools have prominently featured our work, including: - Mirror symmetry for Looijenga pairs and beyond, July 2022 https://umutvg.github.io/Looijenga.html - Mirror symmetry in the log Calabi-Yau setting, May-June 2023 https://sites.google.com/view/hms-workshop2023 - Homological Mirror Symmetry and Symplectomorphisms, June 2023 https://kylerec.wordpress.com/
Start Year 2018
 
Description Kidwai 
Organisation Chinese University of Hong Kong
Country Hong Kong 
Sector Academic/University 
PI Contribution Collaboration with Omar Kidwai. To date we have written one paper, on certain algebro-geometric invariants that arise in the correspondence between quadratic differentials and stability conditions. The collaborator suggested the project, which the Team Member and he then worked equally on. We are currently revising this paper.
Collaborator Contribution Equal collaboration.
Impact Preprint https://arxiv.org/abs/2401.10093
Start Year 2022
 
Description Laplante-Anfossi 
Organisation University of Southern Denmark
Country Denmark 
Sector Academic/University 
PI Contribution Collaboration with Guillaume Laplante-Anfossi. To date we have completed one project. The project arose from discussions between the Team Member and the collaborator.
Collaborator Contribution Equal collaboration.
Impact Research article published here: https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.70024
Start Year 2023
 
Description Pauksztello and Coelho Simoes 
Organisation Lancaster University
Country United Kingdom 
Sector Academic/University 
PI Contribution Collaboration with David Pauksztello and Raquel Coelho Simoes. Project began while the team member was a postdoctoral researcher at Lancaster University funded by Pauksztello's EPSRC grant. We are working on Bongartz completion of pre-simple-minded collections in triangulated categories, building on previous work of the collaborators.
Collaborator Contribution Equal collaboration.
Impact None so far
Start Year 2022
 
Description Smith 
Organisation University of Cambridge
Country United Kingdom 
Sector Academic/University 
PI Contribution Collaboration with Ivan Smith. To date we have completed one project, on symplectic actions of certain groups which arise in algebraic geometry. (The PI suggested the project, and the PI and Smith collaborated equally on all parts of it.) We are working on follow-up questions.
Collaborator Contribution Equal collaboration.
Impact Research article published here: https://doi.org/10.17863/CAM.111857
Start Year 2022
 
Description Ward 
Organisation Massachusetts Institute of Technology
Country United States 
Sector Academic/University 
PI Contribution Collaboration with Dr. Abigail Ward (MIT) on a project directly addresses Problem C.2 from the Case for Support, and goes significantly beyond it. At the time of starting the collaboration, Dr. Ward was a very promising postdoctoral resarcher at MIT. (She has since moved to a postdoctoral position at Cambridge.) This collaboration started as a direct result of the EPSRC application process. It started a little after I was interviewed for the fellowship. (There was a significant delay before I heard of the final decision, though for mentorship reasons it seems important to start working on the project straight away.) I contributed the problem, the overall strategy, and technical expertise on certain aspects (including some of my preliminary work with Hacking).
Collaborator Contribution Ward has strong technical expertise on the geometry of almost-toric fibrations, partly stemming from a project she did with Hanlon. She also has stronger expertise than me in some of the tools we need from algebraic geometry.
Impact Preprint available here: https://arxiv.org/abs/2408.03764 and currently submitted for publication. Additionally, Dr. Ward has moved (as of summer 2023) to a PDRA position in the UK next year, funded by a UKRI grant help by my colleague Prof. Ivan Smith. She has made it clear that her increased interest in mathematics in the UK comes in part as a direct result of this collaboration. As Ward was US-trained until this point, this is clearly a very positive development for UK maths, and a direct consequence of UK funding agency support (both EPSRC and UKRI).
Start Year 2021
 
Description Berlin Mathematical School: colloquium 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact Generalist talk for graduate students from across mathematics.
Year(s) Of Engagement Activity 2023
URL https://mathplus.de/events/15-december-ailsa-keating-the-symplectic-topology-of-singularities/
 
Description MSRI Connections 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The PI co-organised "Connections" [formerly Connections for Women] at MSRI, as part of the Floer homotopy theory special semester. The two-day event is a primarly network-building is opportunity of Ph.D and early career female & non-binary mathematicians. It also gives them the opportunity to find female mentors & role models within their field. As well as short mini-courses and talks by female mathematicians, there was an advice panel [detailed in a different entry], and mentorship pairing groups, which met over lunch & coffee breaks both days.
Year(s) Of Engagement Activity 2022
URL https://www.msri.org/programs/335
 
Description PIMS summer school 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The PI co-organised a major, two-week summer summer school for graduate students, on algebraic topology and symplectic geometry. This consisted of approx. eight intensive 3-4h mini-courses, 4 "hot topics" talks to introduce them to current research topics, and 8 problem sessions. There were approx. 90 participants (heavily oversubscribed: there were more than twice as many applications as that). This was also very important for community building for graduate students, many of whom were meeting peers working on similar topics at other institutions for the first time, because of the effect of covid-restrictions earlier. Several collaborations between student teams were started as a result of the conference.
Year(s) Of Engagement Activity 2022
URL https://www.pims.math.ca/scientific-event/220711-sdms2fht
 
Description Panel Chair, MSRI connections workshop 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The PI chaired a career & work-life balance panel held at the Mathematical Sciences Research Institute as part of their "Connections" [formerly Connections for Women] workshop. This was held in person. The audience consisted primarily of female & non-binary graduate students, with a few more senior female & non-binary mathematicians also in attendance.

Anonymised feedback forms were collected from participants, with overall very positive feedback.
Year(s) Of Engagement Activity 2022
URL https://www.msri.org/workshops/974
 
Description Panel Chair, PIMS workshop 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The PI chaired an expert advice panel on Academic Career Paths at the PIMS graduate summer school on symplectic & algebraic topology. The panel was organised by themes, and audience members had the opportunity to submit questions anonymously ahead of time, or live during the panel. We received very positive feedback from participants, including via anonymised feedback forms.
Year(s) Of Engagement Activity 2022
 
Description Panel Member, European Society in Maths event 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact The PI was a panel member for an online event organised by the European Women in Maths association: https://sites.google.com/view/a2wim-get-together/home
The theme was career advice for young mathematicians. The discussions were very positive and open, and I received very good feedback from the organisers afterwards.
Year(s) Of Engagement Activity 2022
URL https://sites.google.com/view/a2wim-get-together/home