SuperSTEM: National Research Facility for Advanced Electron Microscopy

Lead Research Organisation: University of Leeds
Department Name: Chemical and Process Engineering

Abstract

This proposal requests funding for the provision of SuperSTEM, the EPSRC National Research Facility for Advanced Electron Microscopy (AdvEM), for 5 years from 14 March 2022, together with additional capital funding for a unique, next-generation instrument with capabilities tailored for the study of quantum materials and phenomena.

Since its inception 20 years ago, and since 2011 as the EPSRC NRF for AdvEM, SuperSTEM, has become an internationally renowned user centre. It offers access to world-leading scanning transmission electron microscopy (STEM) instrumentation and expertise for the direct imaging of atomic structures and the determination of chemical composition, bonding and vibrational properties, with a focus on single-atom precision and sensitivity. The NRF enables the elucidation of structure-property relationships in materials and devices for the benefit of a community drawn from over 30 EPSRC Research Areas, both academic and industrial, in fields as diverse as catalysis, energy conversion and storage, bio-materials, organic and inorganic chemistry, mineralogy, planetary science, nuclear materials, condensed matter physics and quantum materials.

The requested funding will provide 5 more years of continued support at a guaranteed service capacity for the worldwide scientific community to access these unique microscopes and expertise not available at institutional level. It will support dedicated collaborative research and training in the interpretation and analysis of AdvEM data. While the Facility's most recent instrument currently boasts internationally leading energy resolutions, this proposal also includes a visionary plan and funding request for a next-generation instrument with transformative capabilities. In particular, the ability to observe samples at liquid helium temperatures in a magnetic-field-free sample environment, while maintaining ultra-high energy and spatial resolution would be world-unique.

This new QuantumSTEM instrument will enable the study of the electronic structure of materials across phase or state transitions, as well as the vibrational fingerprinting of soft matter (such as single molecules, biomaterials, molecular crystals, etc...), bringing to bear the benefits of monochromation on a wider range of systems where low temperature observation can help mitigate beam damage or induce novel physical phenomena. Combined with external sample stimulation by varying the magnetic field materials experience within the microscope, or subjecting them to controlled electrothermal stimuli, the spectroscopic signature of quantum phenomena, e.g. quasiparticles beyond phonons (gauge bosons, magnons), will become accessible at the atomic scale. These themes are central to the emerging field of quantum materials, an area of strategic importance for UK research investment. QuantumSTEM will expand electron microscopy into experimental territory associated with resonant inelastic X-ray scattering at a fraction of the cost and with orders of magnitude higher spatial resolution and detection efficiency.

Publications

10 25 50

publication icon
Lawrence RA (2022) Effects of Multiple Local Environments on Electron Energy Loss Spectra of Epitaxial Perovskite Interfaces. in The journal of physical chemistry. C, Nanomaterials and interfaces

publication icon
Michez L (2022) Unveiling the atomic position of C in Mn 5 Ge 3 C x thin films in Physical Review Materials