DMS-EPSRC: Fast martingales, large deviations and randomised gradients for heavy-tailed target distributions

Lead Research Organisation: University of Warwick
Department Name: Statistics

Abstract

Markov chain is a mathematical object representing a random evolution with the following property: if we know the present state of the chain, its past and future are independent (i.e. information about the past does not alter the distribution of its future states). Markov chain models are fundamental across sciences and engineering. At the centre of this project are Markov chains on multi-dimensional state spaces that arise in randomised algorithms used in statistics and machine learning. This proposal is focused on the theoretical analysis of chains arising in applications in the case when their limiting distribution has heavy tails. The analysis of the heavy-tailed phenomena is crucial for the future success of randomised algorithms for two reasons: (a) they arise naturally in many applied problems and (b) are least well understood as they violate standard assumptions made in the existing theory (e.g. asymptotic linearity of the potential of the limit distribution at infinity).

(a) Heavy-tailed limiting distributions arise naturally in many applications. For example, if the errors in a regression model are distributed according to a Cauchy distribution, the posterior density has polynomial tails. Perhaps a more startling fact is that heavy tails can arise in the posterior even though a heavy-tailed distribution does not appear in the definition of a model. If the errors in a data set are heteroscedastic, meaning that the variance of the error term varies with each observation, it is necessary to use the so-called robust regression (based on e.g. Lasso-type penalisation) in order to reduce the effect of the outliers. Again the posterior has heavy tails.

(b) The presence of a spectral gap is known to be equivalent to geometric convergence of a Markov chain. However, as pointed out recently in the queueing literature, under geometric convergence ergodic estimators may still exhibit large deviation behaviour of the heavy-tailed type. Conversely, Markov chains with heavy tailed stationary measures typically do not have a spectral gap but might nevertheless exhibit good convergence properties. The EPSRC-NSF Lead Agency agreement presents a unique opportunity to combine the US expertise in theoretical Operations Research with the UK's capability in Computational Statistics, resulting in novel methodology for the analysis of the convergence of Markov chains with heavy-tailed targets, the main focus for this project.

Our main goal is to fill the gap in the literature, best illustrated by the following baseline algorithm from applications: a random-scan Metropolis-within-Gibbs chain picks randomly a coordinate of a target distribution and moves it by a one-dimensional Metropolis step based on the conditional of the target. It is possible to prove that if ANY one-dimensional marginal of the target has heavy tails, the random-scan chain is NOT geometrically ergodic. The main goal of this proposal is to lay the theoretical foundations for the analysis of the stability of Markov chains with heavy-tailed targets, focusing on the processes that underpin many randomised algorithms used in practice. In time, this work is expected to have impact far beyond applied probability in a number of sub-areas of computational statistics and machine learning where heavy-tailed targets arise.

Publications

10 25 50
publication icon
Bang D (2024) How smooth can the convex hull of a Lévy path be? in Electronic Journal of Probability

publication icon
Bang D (2022) Asymptotic shape of the concave majorant of a Lévy process in Annales Henri Lebesgue

publication icon
Bang, D. (2022) Hölder continuity of the convex minorant of a Lévy process in Electronic Communications in Probability

publication icon
Bang, D. (2022) When is the convex hull of a Lévy path smooth? in Annales de l'Institut Henri Poincaré

publication icon
Cázares J (2023) Monte Carlo algorithm for the extrema of tempered stable processes in Advances in Applied Probability

publication icon
González Cázares J (2022) Convex minorants and the fluctuation theory of Lévy processes in Latin American Journal of Probability and Mathematical Statistics

publication icon
González Cázares J (2024) How smooth can the convex hull of a Lévy path be? in Electronic Journal of Probability

publication icon
González Cázares J (2023) A Monte Carlo algorithm for the extrema of tempered stable processes in Advances in Applied Probability

publication icon
Menshikov M (2023) Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity in Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

publication icon
Mijatovic A (2022) Limit theorems for local times and applications to SDEs with jumps in Stochastic Processes and their Applications

publication icon
Ramírez M (2024) The sticky Lévy process as a solution to a time change equation in Journal of Mathematical Analysis and Applications

publication icon
Vasdekis Giorgos (2021) Speed Up Zig-Zag in arXiv e-prints

publication icon
Yang Jun (2022) Stereographic Markov Chain Monte Carlo in arXiv e-prints

 
Description New research directions have been identified and significant progress made.

1. Levy processes (LPs) are arguably the most fundamental class of stochastic processes with heavy tails as they are continuous-time analogues of random walks. LPs were introduced in the first half of the twentieth century. They have been extensively studied since and have played a major role in many application areas in the sciences and beyond. In this project we made a surprising discovery of a new representation of the law of a Levy process, based on a probabilistic structure (called the "stick-breaking construction"). This new way of looking at LPs greatly simplified the classical theory, yielding much more directly deep results that previously required 150 pages of a monograph to establish. It also enabled us to prove new results in this classical field. Our main motivation was simulation of certain path statistics of Levy processes with heavy tails, that arise in applications, and it was precisely this angle, which is the focus of this grant, that made these advances possible.

2. High-dimensional heavy-tailed invariant measures and rates of convergence. The convergence of Markov processes with high-dimensional stationary distributions, especially those with heavy tails, is known to be slow in practice and notoriously difficult to analyse. We developed a criterion for establishing lower bounds on the convergence rate in such cases. The key feature of this advance is that it is applicable in practice (in the same way the classical theory for upper bounds on convergence are). It is thus expected to be useful in the design of simulation algorithms, as it will for the first time allow a direct comparison of convergence rates, which is not feasible if only upper bounds are available. A further contribution highlight of the project is a new algorithmic approach for MCMC samplers that maps the original high-dimensional problem in Euclidean space onto a sphere thus remedying the notorious mixing problems for heavy-tailed target distributions. The proposed samplers may enjoy the "blessings of dimensionality", where convergence is faster in higher dimensions.
Exploitation Route The work in this project, while theoretical in nature, can be taken forward to advance the simulation methods for Levy processes used in practice as well as help provide novel approaches to simulation problems within Machine Learning that require sampling from heavy-tailed target distributions. We are still at a relatively early stage of the theoretical developments and expect to report on the implications of this research in more detail in the years to come.
Sectors Digital/Communication/Information Technologies (including Software)

Energy

Financial Services

and Management Consultancy

Healthcare

Security and Diplomacy

URL https://www.youtube.com/@prob-am7844
 
Description HEAVY TAILS IN MACHINE LEARNING - 1 month INI Satellite Programme on applied probability and machine learning, to take place at The Alan Turing Institute
Amount £75,000 (GBP)
Organisation Isaac Newton Institute for Mathematical Sciences 
Sector Academic/University
Country United Kingdom
Start 05/2024 
End 07/2024
 
Description Prob-AM, a YouTube channel for dissemination of research outputs 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Short YouTube videos aimed at researchers and students (graduate and undergraduate). The main purpose is to extend awareness of my research by lowering the time/effort barrier for understanding and using the research output.
Year(s) Of Engagement Activity 2020,2021,2022,2023,2024
URL https://www.youtube.com/channel/UCXSoLS_uKebYZ9GzgAF0ZsA