📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Meltwater Ice-sheet Interactions and the changing climate of Greenland (MII-Greenland)

Lead Research Organisation: Lancaster University
Department Name: Lancaster Environment Centre

Abstract

The Greenland ice sheet (GrIS) is shrinking as Earth's climate warms. In fact, meltwater which runs off the ice sheet is expected to contribute ~10 cm to global sea level by 2100 (Fettweis et al., 2013). This would double the number of people currently experiencing flooding (Nicholls, 2006) potentially cuasing the loss of lives and livelihoods worldwide. Additionally, because meltwater is fresh as opposed to salty, and can contain dissolved nutrients, high meltwater fluxes to the ocean can potentially have an impact on ocean circulation (Luo et al., 2016) and coastal/fjord ecosystems (e.g. Hawkings et al., 2015). In addition to these direct impacts, on its journey out to sea, the meltwater runoff is implicated in a range of processes which also contribute to ice loss (known as feedbacks). Importantly, this includes surface meltwater which is routed underneath the ice sheet, where it can lubricate ice flow (Schoof 2010). This suggests that increases in melt due to a warming climate could lead to a sustained speed-up of the ice sheet; leading to a thinning and flattening. This would exacerbate melting by bringing more ice to elevations with warmer air temperatures, potentially resulting in more mass loss. It is not yet clear whether this will occur because of the complicated processes involved (e.g. Tedstone et al., 2015), however our research has that shown more of the sub-ice sheet environment is likely to be exposed to these processes in the future (Leeson et al., 2015). As such, improving our understanding of the system and how it functions is of great importance.

At present, future GrIS change (e.g. estimates of sea level contribution which feature in the Intergovernmental Panel on Climate Change - IPCC - assessment reports) is predicted using ice sheet models which do not fully account for the feedback processes outlined above. The impact of surface melting on ice flow is controlled by surface and basal hydrological features, for example lakes and streams. These features are too small, and evolve too quickly, for the ice sheet models to simulate, which is why they have not been included in these models until now. Recent technological advances pioneered by our project team (e.g. Goldberg et al., 2009 and Gourmelen et al., 2017) however, now allow for ice sheet models to simulate both small and large scale processes and state-of-the art satellites now capture enough information for us to fully evaluate such a model.

In this project we will exploit these advances and develop a new, robust, coupled hydrology/ice-sheet model which is thoroughly constrained and tested against new, and dedicated, observations. We will then use the model to 1) improve our understanding of the role of surface meltwater in ice dynamics and 2) simulate the GrIS response to changes in surface melting expected under IPCC climate warming scenarios.

Planned Impact

This project will provide a new state-of-the-art estimate of the future contribution of the Greenland ice sheet to global sea level, and the first estimate of future proglacial water flux to the ocean. Since the former is an important climate impact and the latter may contribute to a potential climate feedback our estimates will have major implications for lives and livelihoods worldwide. We have identified four main stakeholders with an interest in this particular work: 1) policy makers, who require accurate information in order to make informed policy decisions, 2) the science leaders of the future (young people) 3) the general public who can use this information to make informed lifestyle choices and 4) the transport and infrastructure industry who use future climate projections to guide building and maintenance plansSpecific examples of how the MII-Greenland project will be useful to these stakeholders are:

1) Policy makers: Policy makers worldwide are interested in accurate assessments of climate and sea-level change in order to make informed decisions which allow populations to reduce, adapt to and mitigate any adverse effects. Policy makers typically rely on documents such as the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports for their information and so in order to ensure that our work features in these documents, we will exploit our existing relationships with leading IPCC authors including Prof Piers Forster (U Leeds) and Prof Anthony Payne (U Bristol). We will keep Profs Forster and Payne informed as to the progress of the project and take advantage of any opportunities that arise to contribute directly to future IPCC reports during the project.

2) Science leaders of the future: understanding the science behind ice sheet change, and it's global impact, is challenging. In order to facilitate wider understanding in this area, we will deliver a public engagement campaign around the 'Ice Flows' educational computer game (www.iceflowsgame.com). Central to the value of Ice Flows in delivering impact is promotion and dissemination. We will develop teaching resources in partnership with The Geographical Association and deliver engagement campaign to bring the game and resources into schools with the support of the UK Polar Network (see letter of support).

3) General Public: The fate of the ice sheets is an issue that the general public can identify with, and indeed this information is important to enable them to make informed lifestyle choices (e.g. buying a house close to the coast or on a floodplain). We will we will maintain a public facing webpage hosted on the Lancaster University site which will be linked into social media (e.g. Lancaster Environment Centre has ~2000 twitter followers). With support from the Press Offices of partner Universities, press releases detailing significant findings and activities will be developed and articles relating to the project will be published across local and national media spanning websites and print.

4) Transport and Infrastructure sector: In order to develop adequate - but cost effective - strategies for the adaptation and mitigation of coastal roads and railways to rising sea levels, infrastructure and transport providers require the best possible predictions of future sea level change. In that respect, we have engaged with Kaine Lynch in the Roads division at Transport Northern Ireland who is interested in potential increases in landslide events associated with sea level rise. We will keep Mr Lynch informed as to the progress of the project and explore opportunities for joint projects around sea level rise and roads as they arise during the work.

Publications

10 25 50
 
Description The Greenland Ice Sheet is losing mass through increased melting and solid ice discharge. Supraglacial meltwater features (e.g., lakes, rivers and slush) are becoming more abundant as a result of the former and are implicated as a control on the latter when they drain. It is not yet clear, however, how this system will respond to future climate changes, and it is likely that melting will continue to increase as the Arctic continues to warm. Here, we use Sentinel-2 and Landsat 8 satellite imagery to compare meltwater features in the Russell/Leverett glacier catchment in a high (2019) and a comparatively low (2018) melt year. We find that in the higher melt year: 1) surface meltwater features form and drain, at ~200 and ~400 m higher elevations, respectively, 2) that small lakes (< 0.0495 km2) - typically disregarded in previous studies - are more prevalent and 3) that slush is more widespread. This is important because we show that all three of these sets of features are associated with transient increases in velocity when they drain, and because refreezing of slush can create ice slabs, which inhibit the storage of meltwater in the porous firn and promote surface ponding and runoff in future years. Interestingly, we also identify the potential occurrence of a cascading lake drainage event in the higher melt year, which also appears to perturb ice velocity. Our study therefore suggests that previously poorly mapped and under-studied features (such as small lakes and slush) are actually important in terms of their impact on ice flow and supraglacial runoff, and thus on global sea level rise, in future, warmer, years.

The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine-terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream and river networks and large supraglacial lakes (SGLs). Streams and rivers can route water into crevasses or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when, and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically based, supraglacial hydrology model for the GrIS that is able to simulate (a) surface meltwater routing and SGL filling; (b) rapid meltwater drainage to the ice sheet bed via the hydrofracture of surface crevasses both in and outside of SGLs; (c) slow SGL drainage via overflow in supraglacial meltwater channels; and, by offline coupling with a second model, (d) the freezing and unfreezing of SGLs from autumn to spring. We call the model the Supraglacial Hydrology Evolution and Drainage (or SHED) model. We apply the model to three study regions in southwest Greenland between 2015 and 2019 (inclusive) and evaluate its performance with respect to observed supraglacial lake extents and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published, and seasonal and interannual variability in proglacial discharge agrees well with that which is observed, though the observations lag the model by a few days since they include transit time through the subglacial system, while the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture and with some lakes draining only partially and
then refreezing. This suggests that, in order to simulate the evolution of Greenland's surface hydrological system with fidelity, a model that includes all of these processes needs to be used. In future work, we will couple our model to a subglacial model and an ice flow model and thus use our estimates of where, when, and how much meltwater gets to the bed to understand the consequences for ice flow.
Exploitation Route Our model code is freely available at https://zenodo.org/record/
7652297 (Gantayat et al., 2023a)
Sectors Environment

 
Description 4D Greenland
Amount € 700,000 (EUR)
Funding ID DTU-ESA-POLAR+4DG 
Organisation European Space Agency 
Sector Public
Country France
Start 08/2020 
End 10/2022
 
Description DTC-Ice Sheets
Amount € 1,500,000 (EUR)
Funding ID AO/1-12108/24/I-KE 
Organisation European Space Agency 
Sector Public
Country France
Start 11/2024 
End 10/2026
 
Description Faculty-funded PhD studentship
Amount £90,000 (GBP)
Organisation Lancaster University 
Sector Academic/University
Country United Kingdom
Start 09/2020 
End 03/2024
 
Description Functional time series analysis for understanding ice sheet change
Amount £14,000 (GBP)
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 01/2023 
End 03/2023
 
Title Dataset for "Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland" 
Description This dataset compliments the paper entitled, "Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland", published in The Cryosphere by Melling et al. (2024). A Creative Commons Attribution license is applied to this dataset meaning the data herein can be re-distributed and re-used pursuant to the condition that appropriate credit is given to the creators. Please read the README.txt file which accompanies this dataset before using or re-distributing. 
Type Of Material Database/Collection of data 
Year Produced 2024 
Provided To Others? Yes  
URL https://zenodo.org/doi/10.5281/zenodo.10598440
 
Title Dataset for "Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland" 
Description This dataset compliments the paper entitled, "Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland", published in The Cryosphere by Melling et al. (2024). A Creative Commons Attribution license is applied to this dataset meaning the data herein can be re-distributed and re-used pursuant to the condition that appropriate credit is given to the creators. Please read the README.txt file which accompanies this dataset before using or re-distributing. 
Type Of Material Database/Collection of data 
Year Produced 2024 
Provided To Others? Yes  
URL https://zenodo.org/doi/10.5281/zenodo.10598441
 
Title SHED V1.0 
Description Described in https://gmd.copernicus.org/articles/16/5803/2023/gmd-16-5803-2023.pdf 
Type Of Material Computer model/algorithm 
Year Produced 2023 
Provided To Others? Yes  
Impact Still early. 
URL https://doi.org/10.5281/zenodo.7633220
 
Title A new hydrological model to simulate supraglacial lake evolution and meltwater drainage on the Greenland Ice Sheet 
Description Model code of the supraglacial hydrology model 
Type Of Technology Software 
Year Produced 2022 
Open Source License? Yes  
URL https://zenodo.org/record/7463322
 
Title A new hydrological model to simulate supraglacial lake evolution and meltwater drainage on the Greenland Ice Sheet 
Description Model code of the supraglacial hydrology model. In the file running_instruction(1).txt, we give the steps about compiling and running the fortran coded part of the hydrology model. In the file, running_lake_refreezing_module.txt, we give the steps that should be followed in order to run the matlab coded part of the hydrology model. In README.txt, we give the role and description of all the code files (both fortran-coded as well as matlab-coded) 
Type Of Technology Software 
Year Produced 2022 
Open Source License? Yes  
URL https://zenodo.org/record/7463321
 
Title A new hydrological model to simulate supraglacial lake evolution and meltwater drainage on the Greenland Ice Sheet 
Description Model code of the supraglacial hydrology model. In the file running_instruction(1).txt, we give the steps about compiling and running the fortran coded part of the hydrology model. In the file, running_lake_refreezing_module.txt, we give the steps that should be followed in order to run the matlab coded part of the hydrology model. In README.txt, we give the role and description of all the code files (both fortran-coded as well as matlab-coded) 
Type Of Technology Software 
Year Produced 2022 
Open Source License? Yes  
URL https://zenodo.org/record/7633220
 
Description European Geosciences Union (EGU) Sharing Geoscience Online (Session: Hydrology of ice shelves, ice sheets and glaciers - from the surface to the base) 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Conference session, 21 abstracts presented.
Year(s) Of Engagement Activity 2020
 
Description External Seminar: Durham University 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Other audiences
Results and Impact External seminar at Durham University to an audience mainly composed of Physical Geography researchers.
Year(s) Of Engagement Activity 2024
 
Description External Seminar: Georgia Tech 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Presented an external seminar online at Georgia Tech University.
Year(s) Of Engagement Activity 2023
 
Description School visit (Lancaster) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact Delivered guest lecture to Geography Society at Lancaster Royal Grammar School. Sparked questions and discussion afterwards, school reported 'Please pass on our thanks to Amber for coming in to LRGS and giving such an excellent talk to the Geographical Society. The boys found it interesting and were discussing the issues raised by it after the event.'
Year(s) Of Engagement Activity 2019
 
Description Talk at Edinburgh Antarctic Research Network 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Other audiences
Results and Impact Invited talk at Edinburgh Arctic Research Network - presented on MII-Greenland to an audience of researchers engaged with Arctic science more broadly including social and biological science aspects.
Year(s) Of Engagement Activity 2019