Assessing Individual And Local Scale Forest Vulnerability To Mortality From The 2019 Extreme Drought In Central Europe
Lead Research Organisation:
University of Stirling
Department Name: Biological and Environmental Sciences
Abstract
Climate change is having significant impacts on the health of trees and forest ecosystems globally. For many regions, the frequency and intensity of drought events are predicted to increase under future climate scenarios. Consequently, widespread reductions in forest growth and increases in the extent and severity of die-off events are anticipated as the climate warms and drought events become more frequent and intense. While the effects of drought events have often been observed at the hot and dry margins of species distributions, alarmingly, recent drought-linked die-off has occurred within the core area of species ranges where climatic conditions should be most favourable. Global models of vegetation growth have difficulty predicting die-off events in areas considered to be generally climatically suitable for the species, bringing considerable challenges in identifying which forests are vulnerable to droughts and how that vulnerability varies across landscapes and individual trees. To address this problem, we urgently need detailed data from individuals that die and those that survive intense drought events from within the core regions of the species distribution. However, predicting when and where intense drought events will occur is extremely challenging, making such responsive data collection very difficult.
In 2019 an intense drought event impacted forests in Central Europe. In the Spring of 2020, it became clear that this drought event had caused widespread, yet highly variable die-off within the core area of the range of the European beech tree - one of the most widely distributed broadleaf trees on the continent and a key forestry resource. The extraordinary response of the European beech forests in Central Europe to the intense drought in 2019 now provides us with an exceptional opportunity to better predict which forest areas are at an increased risk to drought events within the core of this species range. By acting rapidly in the wake of this extreme event before the crowns of the now-dead trees begin to lose branches and collapse, we can collect data from individual trees that died and survived the 2019 drought event to determine how tree size (e.g. diameter, height, crown size), stand competition (e.g. tree density, size distribution), historical growth patterns (determined from tree rings), and local terrain characteristics (e.g. slope, aspect, curvature) influence the vulnerability of trees to drought-induced mortality. We will pair detailed field measurements with equally detailed drone-captured hyperspectral and LiDAR data and satellite remote sensing data that will enable us to assess tree heath and forest structure from above the forest canopy. Effectively exploiting this short window of opportunity to assess the impact of the 2019 drought will enable us to develop new approaches for the rapid assessment of forest health and to predict vulnerability across large areas of forest.
The data collected in this project will allow us to make realistic local forecasts of tree vulnerability to drought and develop remote sensing methods to support the validation of these forest health forecasts. The conditions that have resulted following the drought event in Central Europe in 2019 are extremely rare and so this project provides a major opportunity to drive much needed improvements in remote sensing of forest health and deliver the knowledge and data needed to improve global models of forest growth under ongoing climate change.
In 2019 an intense drought event impacted forests in Central Europe. In the Spring of 2020, it became clear that this drought event had caused widespread, yet highly variable die-off within the core area of the range of the European beech tree - one of the most widely distributed broadleaf trees on the continent and a key forestry resource. The extraordinary response of the European beech forests in Central Europe to the intense drought in 2019 now provides us with an exceptional opportunity to better predict which forest areas are at an increased risk to drought events within the core of this species range. By acting rapidly in the wake of this extreme event before the crowns of the now-dead trees begin to lose branches and collapse, we can collect data from individual trees that died and survived the 2019 drought event to determine how tree size (e.g. diameter, height, crown size), stand competition (e.g. tree density, size distribution), historical growth patterns (determined from tree rings), and local terrain characteristics (e.g. slope, aspect, curvature) influence the vulnerability of trees to drought-induced mortality. We will pair detailed field measurements with equally detailed drone-captured hyperspectral and LiDAR data and satellite remote sensing data that will enable us to assess tree heath and forest structure from above the forest canopy. Effectively exploiting this short window of opportunity to assess the impact of the 2019 drought will enable us to develop new approaches for the rapid assessment of forest health and to predict vulnerability across large areas of forest.
The data collected in this project will allow us to make realistic local forecasts of tree vulnerability to drought and develop remote sensing methods to support the validation of these forest health forecasts. The conditions that have resulted following the drought event in Central Europe in 2019 are extremely rare and so this project provides a major opportunity to drive much needed improvements in remote sensing of forest health and deliver the knowledge and data needed to improve global models of forest growth under ongoing climate change.
Publications

Dorado-Liñán I
(2022)
Jet stream position explains regional anomalies in European beech forest productivity and tree growth.
in Nature communications

Martinez Del Castillo E
(2022)
Climate-change-driven growth decline of European beech forests
in Communications Biology

Martínez-Vilalta J
(2023)
Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants.
in The New phytologist

Nikinmaa L
(2020)
Reviewing the Use of Resilience Concepts in Forest Sciences.
in Current forestry reports

Nikinmaa L
(2023)
A balancing act: Principles, criteria and indicator framework to operationalize social-ecological resilience of forests.
in Journal of environmental management

Watts S
(2022)
The benefits of mountain woodland restoration
in Restoration Ecology

West E
(2022)
Satellite data track spatial and temporal declines in European beech forest canopy characteristics associated with intense drought events in the Rhön Biosphere Reserve, central Germany.
in Plant biology (Stuttgart, Germany)
Description | Findings are currently being used to develop and refine a remote sensing forest health tool |
First Year Of Impact | 2023 |
Sector | Environment |
Impact Types | Economic |
Description | Forth Climate Forest |
Amount | £324,381 (GBP) |
Organisation | Woodland Trust |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 02/2023 |
End | 01/2025 |
Description | Quantifying the 2022-2023 altitudinal range-wide tree mass-mortality event and probability of forest loss in Central Chile |
Amount | £76,638 (GBP) |
Funding ID | NE/Y004205/1 |
Organisation | Natural Environment Research Council |
Sector | Public |
Country | United Kingdom |
Start | 11/2023 |
End | 10/2024 |
Title | Co-aligned hyperspectral and LiDAR data collected in drought-stressed European beech forest, Rh?n Biosphere Reserve, Germany, 2020 |
Description | This dataset comprises co-aligned hyperspectral and LiDAR data collected of European beech (Fagus sylvatica) forest within core protected areas of the UNESCO Rh?n Biosphere Reserve, Germany. Data was collected using the Headwall Hyperspec Nano sensor flown from a unmanned aerial vehicle (UAV) in September 2020. The dataset comprises image and LiDAR data of four sites, each approximately 8ha in size. The study forests were subject to the extreme drought event that impacted central Europe in 2018/2019 and this project sought to collect data to enable individual tree and stand level assessment of the response (canopy damage and defoliation) of European beech trees to extreme drought events. The hyperspectral images available in this dataset have approx. 5cm pixel size with an associated LiDAR dataset and are suitable for identifying individual trees and the degree of canopy damage (defoliation, discolouration, and mortality) sustained by individuals/stands within the forest. |
Type Of Material | Database/Collection of data |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | Under analysis with other co-located datasets to determine landscape scale correlates of variation in drought impact across the region |
Title | European beech tree ring data, Rhön Biosphere Reserve, Germany, 2021 |
Description | This dataset includes tree ring width data, derived from tree cores, that were sampled from sites across the Rhön Biosphere Reserve (Germany). At each chosen site three trees were cored, with 2-3 cores taken per cored tree. Data was collected in August 2021. |
Type Of Material | Database/Collection of data |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | These data were used to explore variability in annual tree growth, its relationship with environmental factors and the extent to which this was reflected in remote sensing data. |
URL | https://catalogue.ceh.ac.uk/id/8d6effc3-54f2-4770-ac34-63320eb9e4e2 |
Title | Post-drought forest inventory and tree canopy health data, Rh?n Biosphere Reserve, Germany, 2021 |
Description | This dataset comprises forest inventory (diameter at breast height, tree height, social class and relative crown distance) and tree canopy health data (extent of overall damage, discolouration and defoliation) collected in 2021 from sites within core protected areas of the UNESCO Rh?n Biosphere Reserve dominated by European beech (Fagus sylvatica) forest. The study forests were subject to the extreme drought event that impacted central Europe in 2018/2019 and this project sought to collect data to enable the analysis of individual tree and stand level characteristics that influence the response (canopy damage and defoliation) of European beech trees to extreme drought events. Field assessments of individual tree and stand canopy health were carried out within this project collecting data comprising canopy condition assessments and measurements of individual tree size and stand demography. |
Type Of Material | Database/Collection of data |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | Dataset in use to identify landscape-scale correlates of drought susceptibility in continuous forest |
Title | Unmanned aerial vehicle images of drought-stressed European beech forests in the Rh?n Biosphere Reserve, Germany, 2020 |
Description | This dataset comprises four RGB unmanned aerial vehicle (UAV) images collected in September 2020 of European beech (Fagus sylvatica) forest within core protected areas of the UNESCO Rh?n Biosphere Reserve, Germany. The study forests were subject to the extreme drought event that impacted central Europe in 2018/2019 and this project sought to collect data to enable the analysis of individual tree and stand level response (canopy damage and defoliation) of European beech trees to extreme drought events. The RGB images available in this dataset have approx. 3cm pixel size with an associated 10cm pixel digital elevation model (DEM) and are suitable for identifying individual trees and the degree of canopy damage (defoliation, discolouration, and mortality) sustained by individuals/stands within the forest. The work was supported by the Natural Environment Research Council (Grant NE/V00929X/1). |
Type Of Material | Database/Collection of data |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | Dataset in use to identify landscape-scale correlates of drought susceptibility in continuous forest |
URL | https://catalogue.ceh.ac.uk/id/b2d17962-3c7f-4193-a180-cde885d1a83e |
Description | Impacts of extreme events on tree growth |
Organisation | Technical University of Munich |
Country | Germany |
Sector | Academic/University |
PI Contribution | Currently collaborating on additional data analysis of the data collected under the NERC funded project |
Collaborator Contribution | Design and implementation of analysis |
Impact | Submission of NERC ForeSight grant with TUM as a project partner |
Start Year | 2013 |
Description | Technical University of Dresden |
Organisation | Technical University of Dresden |
Country | Germany |
Sector | Academic/University |
PI Contribution | Research partner in the project working in close association with the UK team |
Collaborator Contribution | Research partner in the project working in close association with the UK team |
Impact | Collaborate in the design and implementation of fieldwork & processing of field samples. Collaborators in analysis of data. |
Start Year | 2019 |
Description | Technical University of Munich |
Organisation | Technical University of Munich |
Country | Germany |
Sector | Academic/University |
PI Contribution | Research partner in the ForeSight project working in close association with the UK team |
Collaborator Contribution | Research partner in the ForeSight project working in close association with the UK team |
Impact | Collaborate in the design and implementation of fieldwork & processing of field samples. Collaborators in analysis of data. |
Start Year | 2013 |