UK Involvement in the Operation of Advanced LIGO

Lead Research Organisation: Cardiff University
Department Name: School of Physics and Astronomy

Abstract

Through the design and construction project 'Advanced LIGO UK,' the UK has succeeded in making fundamental contributions to the Advanced LIGO (aLIGO) detectors in the US by transfer of technology originally developed for GEO 600. As a direct result, UK groups are in a position to fully exploit the rich science data that will be produced over the coming decade. There is, therefore, a unique opportunity to ensure that UK scientists maintain leadership in gravitational wave science, by providing the support and infrastructure necessary for the UK to maintain full involvement in the operation of the aLIGO detectors and so to remain active partners in the user-community group, the LIGO Scientific Collaboration (LSC), through which data rights are earned and distributed. Of equal importance is the need to ensure that UK delivered equipment and facilities for the aLIGO detectors are fully exploited to maximise the science output. This is true both in terms of their implementation within aLIGO, and later when it is planned that reconfiguration or upgrading of aLIGO will be undertaken. It is envisaged that the UK equipment which has been designed to meet all long-term project goals, will remain in place even following such upgrades, and continued UK technical support will help to ensure that is the case. The UK membership of the LSC is considerable, and we have been able to leverage data access and science return for a relatively small investment in the total hardware investment (at the few percent level). Further we are in a position to maintain involvement at the highest level for very modest additional investment, as set out in detail in this proposal.

Publications

10 25 50
 
Title Gravitational Wave Artwork Infinite LIGO Dreams 
Description Painting inspired by first detection of gravitational waves. 
Type Of Art Image 
Year Produced 2016 
Impact The Institute of Physics Scotland will be awarding 5 special edition prints 'Infinite LIGO Dreams' to winners of a science award that will be presented in the summer of 2017. Featured by Physics World http://blog.physicsworld.com/2016/11/24/the-beauty-of-gravitational-waves/ Featured by CERN Courier http://cerncourier.com/cws/download/Jan-Feb17 
 
Description This award funded the operation of a large computational resource at Cardiff University that was used to perform searches for gravitational waves in the data taken by the advanced LIGO detectors. In September 2015, the first gravitational wave signal, emitted during the merger of two black holes, was observed. The computing provided by this award was used to extract the signal from the data and provide accurate measurements of the parameters of the two black holes.
Exploitation Route The detection of gravitational waves is a major scientific breakthrough, and will have a major impact on astronomy over the coming years, as we observe more gravitational wave events and use them to observe the universe in an entirely new way.

The research performed on computing algorithm development and code optimisation is being shared with other researchers across physics and astronomy. Additionally, work on securely accessing remote computing services is being continued in collaboration with other researchers across Europe and could, in the long term, lead to new, secure methods of authenticating to services on the internet.
Sectors Digital/Communication/Information Technologies (including Software),Education

URL https://www.ligo.caltech.edu/detection
 
Description Astroparticle Physics European Consortium
Geographic Reach Europe 
Policy Influence Type Participation in a advisory committee
 
Description KAGRA Programme Advisory Board
Geographic Reach Asia 
Policy Influence Type Participation in a advisory committee
 
Description LIGO Scientific Collaboration (LSC), Executive Committee
Geographic Reach Multiple continents/international 
Policy Influence Type Participation in a advisory committee
 
Description Member - ESA's Gravitational Observatory Advisory Team (GOAT)
Geographic Reach Multiple continents/international 
Policy Influence Type Participation in a advisory committee
 
Description SF - Chair of STFC Computing Advisory Panel
Geographic Reach National 
Policy Influence Type Participation in a advisory committee
 
Description SF - Member of STFC Computing Strategic Review
Geographic Reach National 
Policy Influence Type Participation in a advisory committee
URL http://www.stfc.ac.uk/about-us/how-we-are-governed/advisory-boards-panels-committees/computing-advis...
 
Description STFC Particle Astrophysics Advisory Panel
Geographic Reach National 
Policy Influence Type Participation in a advisory committee
 
Description Virgo Science & Technology Advisory Committee
Geographic Reach Europe 
Policy Influence Type Participation in a advisory committee
 
Description Authentication and Authorisation For Research and Collaboration (AARC2)
Amount € 2,999,892 (EUR)
Funding ID 730941 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 05/2017 
End 04/2019
 
Description Investigations in Gravitational Radiation
Amount £1,303,610 (GBP)
Funding ID ST/N005430/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Academic/University
Country United Kingdom
Start 10/2016 
End 09/2020
 
Description Proposal for UK Involvement in the Operation of Advanced LIGO
Amount £829,829 (GBP)
Funding ID ST/N000064/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Academic/University
Country United Kingdom
Start 01/2016 
End 12/2019
 
Description Science and Technology Funding Council - Investigations in Gravitational Radiation
Amount £4,360,741 (GBP)
Funding ID ST/N005422/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Academic/University
Country United Kingdom
Start 10/2016 
End 09/2020
 
Description ALUK 
Organisation University of Glasgow
Department UK Advanced LIGO Project (ALUK)
Country United Kingdom 
Sector Academic/University 
PI Contribution The UK Advanced LIGO Project (ALUK) involves transfer of the multiple stage / monolithic silica suspension technology developed for the GEO 600 detector to the LIGO detectors based in the U.S. Along with transfer of enhanced interferometric techniques this will create Advanced LIGO (aLIGO). We have provided all the main suspension systems for the three Advanced LIGO gravitational wave detectors. These complex mechanical systems suspend the core optical components, i.e. mirrors and beam-splitters, which form the interferometer at the heart of each detector. In particular we developed and then provided the ultra-low-dissipation, fused silica suspension technology that enables Advanced LIGO to have excellent sensitivity at low frequencies, plus all the associated production and characterisation equipment necessary to manufacture, install and maintain the suspensions. We provide continuing support for the assembly, characterisation, commissioning and operation of the suspensions and related detector technology.
Collaborator Contribution Membership of the ALUK enabled the associated project to be completed. Intellectual input, and design, procurement and manufacturing effort was shared among the partners. A memorandum of understanding signed by LIGO provides for access to gravitational wave data from aLIGO. The aims of the ALUK collaboration are to design and build detector components, and to assist with their installation and commissioning, and with the operation of the resulting aLIGO detectors. Collaborators provided design input to many subsystems of the project, expertise in procurement and manufacturing of precision electronic and mechanical components, and also project management.
Impact Philip Leverhulme Prize RCUK Fellowship Post-doctoral Fellowship EC Framework 7 Infrastructures program International Joint Project Award scheme Travel grant RCUK Science Bridges RCUK Science Bridges Seedcorn grant Research Merit Award JISC Grant SUPA Studentship Science in Society Fellowship RSE/Scottish Executive Personal Research Fellowship MP FS AH MB SR Royal Society Summer Science Exhibition 2008 Appearance on Radio 4 programme "In our time" Appearance on BBC One Countryfile Regular visits to local schools Public lectures at Science Centres and Science Festivals Events for International Year of Astronomy 2009 Lectures to amateur astronomical societies Meet the Scientist @ Glasgow Science Centre Science @ the Scottish Parliament Astronomy's New Messengers Icarus at the Edge of Time CPD Training for schoolteachers ScienceFace Scottish Science Advisory Council Technology Development Hydroxy-catalysis bonding for technology applications Hydroxy-catalysis bonding for research Fused silica suspension fibres for application in technology Fused silica suspension fibres for gravitational wave detectors Bayesian Techniques in precision optical sensing Bayesian Techniques in gravitational wave data analysis Amplitude or arbitrary phase sideband optical cavity probes Technology Development Diffractively coupled high finesse optical cavities Silicon Carbide bonding Berlin 2009 GWADW 2009 Amaldi 2009 RAS NAM 2009 GWADW 2009 RAS NAM 2008 Texas 2008 Moscow 2008 Schuster Colloquium Elizabeth Spreadbury Lecture RSE Gunning Victoria Jubilee Prize Lectureship Wolfson Research Merit Award Tannahill Lecture and Medal Fellow ISGRGI FRSE (1) FInstP (1) FRAS (1) FRSE (2) Max-Planck-Society FRAS (2) History and Development of Knowledge IOP Nuclear and Particle Physics Divisional Conference Advanced Detector Workshop Kyoto LISA Symposium Stanford Optical Fibre Sensors Edinburgh Advanced Detector Workshop Florida Gravitational Wave Bursts meeting Mexico ILIAS Dresden IoP NPPD conference Glasgow 12th Marcel Grossman meeting Paris Lomonosov conference Moscow Advanced Detector Workshop Florida GR19 Meeting Mexico LISA International Symposium Stanford OECD Global Science Forum India IAU Rio de Janeiro Amaldi NY Fujihara Seminar Tokyo OECD Global Science Forum Cracow NEB X111 Thessaloniki New Worlds Portugal PASCOS 07 London LEOS Montreal XX1X Spanish Relativity Meeting Mallorca Rencontres de Moriond Italy Texas Symposium Heidelberg Aspera Workshop Paris IoP HEPP and AP Annual Meeting Frontiers in Optics, OSA, San Jose Amaldi NY Fujiwara Foundation Seminar Japan Advanced Detector Workshop Florida IoP Astroparticle meeting Oxford Cosmo 07 Sussex Aspera Workshop Paris Workshop on Charging Issues MIT IoP NPPD Annual conference Surrey RAS ordinary meeting London ILIAS Italy IAU General Assembly Prague NPPD Conference Glasgow Statistical Challenges Penn State Amaldi student talk Visiting Professorship Jena STFC Particle Astrophysics Advisory panel Physical and Engineering Committee of ESF SSAC Chair GWIC Chair STFC Panels Royal Society Research Grants Panel Aspera/ApPEC Science Advisory Committee Trustee RSE RSE Fellowship Committee IoP Awards Committee Chair LIGO Election & Membership GWIC Deputy Chair PPAN RSE Grants Committee RSE Sectional Committee Stanford-Scotland Photonics GEO Executive Committee FP7 ET Design Study Member STFC Science Committee PPAN GWIC Roadmap committee STFC Oversight Committee Zeplin III Aspera/ApPEC Peer Review Committee Governing Council FP6 ILIAS Aspera/ApPEC Roadmap Committee Advanced Detector committee LSC Publication Policy committee LSC LSC CW Group co-Chair reelected SUPA Astro theme leader LSC CW Group co-chair LSC Detection Committee LSC Data Analysis Council FRSE Aspen Center for Physics 2008 Aspen Center for Physics 2011 Advanced Detectors Workshop Kyoto Cosmic Co-Motion Queensland SAMSI North Carolina Center for Astrostatistics Penn State RAS NAM Llandudno Cosmology and Machine Learning UCL ILIAS Dresden PF PhD FB PhD KC Ugrad LO Ugrad RD Ugrad LM Ugrad LMac Ugrad AB Ugrad EWB Ugrad DF PhD ST Staff BL Staff HW PhD KB RA SF Staff KS staff LSF staff ZP Ugrad DH PhD RU Ugrad NH Ugrad MC Ugrad SL Ugrad NG Ugrad CS PhD OB PhD OB PhD MB PhD EJ Ugrad RM Ugrad RW Ugrad SJ Ugrad SL Ugrad BL Staff BG Ugrad AP PhD PS staff VM staff LG Staff CC PhD SZ Ugrad NM PhD MJ staff AG PhD FGC PhD
 
Description ET-R&D collaboration 
Organisation Cardiff University
Country United Kingdom 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation Friedrich Schiller University Jena (FSU)
Country Germany 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation Max Planck Society
Department Max Planck Institute for Gravitational Physics
Country Germany 
Sector Public 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation National Institute for Subatomic Physics Nikhef
Country Netherlands 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation Russian ET Consortium
Country Russian Federation 
Sector Public 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation University of Birmingham
Country United Kingdom 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation University of Warsaw
Department Polish ET Consortium
Country Poland 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description ET-R&D collaboration 
Organisation University of the West of Scotland
Country United Kingdom 
Sector Academic/University 
PI Contribution We are contributing experimental and modelling expertise to three of the working groups (WG) in this project. In WG1 we will develop methods of parameter estimation for transient signals detected by ET, through application of our existing expertise in gravitational wave data analysis. In WG3 we will develop apparatus for measuring the birefringence of coated silicon samples and apply our expertise in finite element modelling to assist in the interpretation of cryogenic birefringence measurements carried out in collaboration with Hannover and Jena. In WG4 we will carry out studies and simulations of sensing and control issues for ET and carry out detailed modelling of the quantum noise and optical configuration.
Collaborator Contribution The aim of this project is to carry out essential collaborative research and development on key out-standing topics of the technical design of the Einstein Telescope, a 3rd generation underground gravitational wave detector. The three working groups we are participating in aim to study the scientific potential of ET, investigate key optical properties of silicon mirrors and study the advanced interferometer control systems required for ET. Each of these areas requires close collaboration with our European partners and the combination of the facilities and expertise of the participating groups. This will be facilitated by regular teleconferences, meetings and research visits between us and our partners, ensuring effective management of the joint projects and regular exchange of idea and results. Participation in this project provides opportunities for us to continue to contribute strongly to the technical development of ET and ensures that we continue to be an integral part of future developments in the field of gravitational wave detection in Europe.
Impact TBC - activity started last month
Start Year 2013
 
Description GEO600 
Organisation GEO collaboration
Country Global 
Sector Private 
PI Contribution We have provided fused silica suspensions for the GEO 600 gravitational wave detector. These complex mechanical systems suspend the core optical components, i.e. mirrors and beam-splitters, which form the interferometer at the heart of each detector. We have also contributed to almost every other area of detector development, construction, installation and operation, and also to analysis of the resulting data. Examples include contributions to: detector topology and layout; interferometer sensing and control; digital control sub-systems; radio-frequency electro-optic modulation equipment; efficient photo-detection; seismic isolation; seismic monitoring; feed-forward seismic sensing and control; detector supervisory control infrastructure; detector calibration systems; low-level data collection and processing algorithms and systems; laser stabilisation and monitoring; environmental monitoring; data searches for continuous signals (pulsars) and data searches for burst signals (black hole formation).
Collaborator Contribution The GEO600 team collaborates with the GW groups in the USA (LIGO), in France/Italy (Virgo) and in Japan (TAMA300). As a member of the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration, GEO600 has performed several long-term data runs together with the other gravitational wave detectors, in the search for the first observations. Financial support for the GEO project has been supplied by the State of Lower Saxony, the Max Planck Society, the Science and Technology Facilities Council, the Volkswagen Foundation, and the Federal Republic of Germany. Personnel costs are supplied by the Max Planck Society and the Leibniz University Hannover, running costs by the Max Planck Society Membership of the GEO is core to our research. It provides access to gravitational wave data, opportunities to contribute to instrument upgrades, training for our graduate students and PDRAs, and is the first destination for many of our technology developments. Membership of GEO was a step towards membership of the LSC (q.v.). Collaborators operate the GEO 600 detector to produce data. They archive this and enable us to access it for analysis and carry out joint analysis with us. Collaborators host our equipment at the detector, which we built jointly with them. Through exchange visits and regular meetings there is exchange of ideas on all aspects of gravitational wave detector design.
Impact Philip Leverhulme Prize RCUK Fellowship Post-doctoral Fellowship EC Framework 7 Infrastructures program International Joint Project Award scheme Travel grant RCUK Science Bridges RCUK Science Bridges Seedcorn grant Research Merit Award JISC Grant SUPA Studentship Science in Society Fellowship RSE/Scottish Executive Personal Research Fellowship MP FS AH MB SR Royal Society Summer Science Exhibition 2008 Appearance on Radio 4 programme "In our time" Appearance on BBC One Countryfile Regular visits to local schools Public lectures at Science Centres and Science Festivals Events for International Year of Astronomy 2009 Lectures to amateur astronomical societies Meet the Scientist @ Glasgow Science Centre Science @ the Scottish Parliament Astronomy's New Messengers Icarus at the Edge of Time CPD Training for schoolteachers ScienceFace Scottish Science Advisory Council Technology Development Hydroxy-catalysis bonding for technology applications Hydroxy-catalysis bonding for research Fused silica suspension fibres for application in technology Fused silica suspension fibres for gravitational wave detectors Bayesian Techniques in precision optical sensing Bayesian Techniques in gravitational wave data analysis Amplitude or arbitrary phase sideband optical cavity probes Diffractively coupled high finesse optical cavities Silicon Carbide bonding Berlin 2009 GWADW 2009 Amaldi 2009 RAS NAM 2009 GWADW 2009 RAS NAM 2008 Texas 2008 Moscow 2008 Schuster Colloquium Elizabeth Spreadbury Lecture RSE Gunning Victoria Jubilee Prize Lectureship Wolfson Research Merit Award Tannahill Lecture and Medal Fellow ISGRGI FRSE (1) FInstP (1) FRAS (1) FRSE (2) Max-Planck-Society FRAS (2) History and Development of Knowledge IOP Nuclear and Particle Physics Divisional Conference Advanced Detector Workshop Kyoto LISA Symposium Stanford Advanced Detector Workshop Florida Gravitational Wave Bursts meeting Mexico ILIAS Dresden IoP NPPD conference Glasgow 12th Marcel Grossman meeting Paris Lomonosov conference Moscow Advanced Detector Workshop Florida GR19 Meeting Mexico LISA International Symposium Stanford OECD Global Science Forum India IAU Rio de Janeiro Amaldi NY Fujihara Seminar Tokyo OECD Global Science Forum Cracow NEB X111 Thessaloniki New Worlds Portugal PASCOS 07 London LEOS Montreal XX1X Spanish Relativity Meeting Mallorca Rencontres de Moriond Italy Texas Symposium Heidelberg Aspera Workshop Paris IoP HEPP and AP Annual Meeting Frontiers in Optics, OSA, San Jose Amaldi NY Fujiwara Foundation Seminar Japan Advanced Detector Workshop Florida IoP Astroparticle meeting Oxford Cosmo 07 Sussex Aspera Workshop Paris Workshop on Charging Issues MIT IoP NPPD Annual conference Surrey RAS ordinary meeting London ILIAS Italy IAU General Assembly Prague NPPD Conference Glasgow Statistical Challenges Penn State Amaldi student talk Visiting Professorship Jena STFC Particle Astrophysics Advisory panel Physical and Engineering Committee of ESF SSAC Chair GWIC Chair STFC Panels Royal Society Research Grants Panel Aspera/ApPEC Science Advisory Committee Trustee RSE RSE Fellowship Committee IoP Awards Committee Chair LIGO Election & Membership GWIC Deputy Chair PPAN RSE Grants Committee RSE Sectional Committee Stanford-Scotland Photonics GEO Executive Committee FP7 ET Design Study Member STFC Science Committee PPAN GWIC Roadmap committee STFC Oversight Committee Zeplin III Aspera/ApPEC Peer Review Committee Governing Council FP6 ILIAS Aspera/ApPEC Roadmap Committee Advanced Detector committee LSC Publication Policy committee LSC LSC CW Group co-Chair reelected SUPA Astro theme leader LSC CW Group co-chair LSC Detection Committee LSC Data Analysis Council FRSE Aspen Center for Physics 2008 Aspen Center for Physics 2011 Advanced Detectors Workshop Kyoto Cosmic Co-Motion Queensland SAMSI North Carolina Center for Astrostatistics Penn State RAS NAM Llandudno Cosmology and Machine Learning UCL ILIAS Dresden PF PhD FB PhD KC Ugrad LO Ugrad RD Ugrad LM Ugrad LMac Ugrad AB Ugrad EWB Ugrad DF PhD ST Staff BL Staff HW PhD KB RA SF Staff KS staff LSF staff ZP Ugrad DH PhD RU Ugrad NH Ugrad MC Ugrad SL Ugrad NG Ugrad CS PhD OB PhD OB PhD MB PhD EJ Ugrad RM Ugrad RW Ugrad SJ Ugrad SL Ugrad BL Staff BG Ugrad AP PhD PS staff VM staff LG Staff CC PhD SZ Ugrad NM PhD MJ staff AG PhD FGC PhD
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Beijing Normal University
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Cardiff University
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Changchun University
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Huazhong University of Science and Technology
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Hubei University of Education
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Imperial College London
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Shandong University
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Sun Yat-Sen University
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Tongji University
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation Tsinghua University China
Country China 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of Birmingham
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of Glasgow
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of Sheffield
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of Southampton
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of Strathclyde
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description Gravitational-wave Excellence through Alliance Training (GrEAT) Network with China 
Organisation University of the West of Scotland
Country United Kingdom 
Sector Academic/University 
PI Contribution As this is training and capacity building grant, we will contribute scientific excellence and skills across the full range of gravitational wave science (from instrumentation to astrophysics), as well as our expertise in outreach and collaboration with industry.
Collaborator Contribution Full range of the relevant expertise available in the Chinese Gravitational Wave consortium.
Impact Collaboration just started
Start Year 2018
 
Description LSC 
Organisation LIGO Scientific Collaboration
Country United States 
Sector Academic/University 
PI Contribution The LSC carries out the science of the LIGO Observatories, located in Hanford, Washington and Livingston, Louisiana as well as that of the GEO600 detector in Hannover, Germany. Our collaboration is organized around three general areas of research: analysis of LIGO and GEO data searching for gravitational waves from astrophysical sources, detector operations and characterization, and development of future large scale gravitational wave detectors. As evidenced by our outputs that emerge from this collaboration, we contribute strongly to these three areas. In particular we develop low-noise suspension technology and design new optical techniques for the detectors. We also contribute strongly to data analysis particularly in the searches for pulsars and "ringing down" of newly formed black holes. One of our most significant contributions in the area of data analysis has been in the application of Bayesian techniques to parameter estimation in gravitational wave searches.
Collaborator Contribution The LIGO Scientific Collaboration (LSC) is a group of scientists seeking to make the first direct detection of gravitational waves, use them to explore the fundamental physics of gravity, and develop the emerging field of gravitational wave science as a tool of astronomical discovery. The LSC works toward this goal through research on, and development of techniques for, gravitational wave detection; and the development, commissioning and exploitation of gravitational wave detectors. Membership of the LSC fundamentally enables our research. It provides access to gravitational wave data, opportunities to contribute to instrument upgrades, and training for our graduate students, and is the primary locus for application of our technology developments. As the World-leading collaboration in the field membership of the LSC is vital to our ongoing research. Collaborators operate the four LSC detectors to produce gravitational wave data. With us they archive this and enable us to access it for analysis. The collaboration carries out joint analysis of the data from all four instruments. Collaborators host our equipment at the detectors, and also at test facilities at which we undertake joint technology developments, supplementing those we carry out in Glasgow. Collaborators provide training in the operation of detectors, and detector subsystems. Within the technical working groups set up by the collaboration, there is exchange of ideas on advanced interferometer techniques and topologies, on data analysis, on laser sources, on optics, including optical coatings and thermal noise, and on suspension technology.
Impact Philip Leverhulme Prize RCUK Fellowship Post-doctoral Fellowship EC Framework 7 Infrastructures program International Joint Project Award scheme Travel grant RCUK Science Bridges RCUK Science Bridges Seedcorn grant Research Merit Award JISC Grant SUPA Studentship Science in Society Fellowship RSE/Scottish Executive Personal Research Fellowship MP FS AH MB SR Royal Society Summer Science Exhibition 2008 Appearance on Radio 4 programme "In our time" Appearance on BBC One Countryfile Regular visits to local schools Public lectures at Science Centres and Science Festivals Events for International Year of Astronomy 2009 Lectures to amateur astronomical societies Meet the Scientist @ Glasgow Science Centre Science @ the Scottish Parliament Astronomy's New Messengers Icarus at the Edge of Time CPD Training for schoolteachers ScienceFace Scottish Science Advisory Council Technology Development Hydroxy-catalysis bonding for technology applications Hydroxy-catalysis bonding for research Fused silica suspension fibres for application in technology Fused silica suspension fibres for gravitational wave detectors Bayesian Techniques in precision optical sensing Bayesian Techniques in gravitational wave data analysis Amplitude or arbitrary phase sideband optical cavity probes Technology Development Diffractively coupled high finesse optical cavities Silicon Carbide bonding Berlin 2009 GWADW 2009 Amaldi 2009 RAS NAM 2009 GWADW 2009 RAS NAM 2008 Texas 2008 Moscow 2008 Schuster Colloquium Elizabeth Spreadbury Lecture RSE Gunning Victoria Jubilee Prize Lectureship Wolfson Research Merit Award Tannahill Lecture and Medal Fellow ISGRGI FRSE (1) FInstP (1) FRAS (1) FRSE (2) Max-Planck-Society FRAS (2) History and Development of Knowledge IOP Nuclear and Particle Physics Divisional Conference Advanced Detector Workshop Kyoto LISA Symposium Stanford Optical Fibre Sensors Edinburgh Advanced Detector Workshop Florida Gravitational Wave Bursts meeting Mexico ILIAS Dresden IoP NPPD conference Glasgow 12th Marcel Grossman meeting Paris Lomonosov conference Moscow Advanced Detector Workshop Florida GR19 Meeting Mexico LISA International Symposium Stanford OECD Global Science Forum India IAU Rio de Janeiro Amaldi NY Fujihara Seminar Tokyo OECD Global Science Forum Cracow NEB X111 Thessaloniki New Worlds Portugal PASCOS 07 London LEOS Montreal XX1X Spanish Relativity Meeting Mallorca Rencontres de Moriond Italy Texas Symposium Heidelberg Aspera Workshop Paris IoP HEPP and AP Annual Meeting Frontiers in Optics, OSA, San Jose Amaldi NY Fujiwara Foundation Seminar Japan Advanced Detector Workshop Florida IoP Astroparticle meeting Oxford Cosmo 07 Sussex Aspera Workshop Paris Workshop on Charging Issues MIT IoP NPPD Annual conference Surrey RAS ordinary meeting London ILIAS Italy IAU General Assembly Prague NPPD Conference Glasgow Statistical Challenges Penn State Amaldi student talk Visiting Professorship Jena STFC Particle Astrophysics Advisory panel Physical and Engineering Committee of ESF SSAC Chair GWIC Chair STFC Panels Royal Society Research Grants Panel Aspera/ApPEC Science Advisory Committee Trustee RSE RSE Fellowship Committee IoP Awards Committee Chair LIGO Election & Membership GWIC Deputy Chair PPAN RSE Grants Committee RSE Sectional Committee Stanford-Scotland Photonics GEO Executive Committee FP7 ET Design Study Member STFC Science Committee PPAN GWIC Roadmap committee STFC Oversight Committee Zeplin III Aspera/ApPEC Peer Review Committee Governing Council FP6 ILIAS Aspera/ApPEC Roadmap Committee Advanced Detector committee LSC Publication Policy committee LSC LSC CW Group co-Chair reelected SUPA Astro theme leader LSC CW Group co-chair LSC Detection Committee LSC Data Analysis Council FRSE Aspen Center for Physics 2008 Aspen Center for Physics 2011 Advanced Detectors Workshop Kyoto Cosmic Co-Motion Queensland SAMSI North Carolina Center for Astrostatistics Penn State RAS NAM Llandudno Cosmology and Machine Learning UCL ILIAS Dresden PF PhD FB PhD KC Ugrad LO Ugrad RD Ugrad LM Ugrad LMac Ugrad AB Ugrad EWB Ugrad DF PhD ST Staff BL Staff HW PhD KB RA SF Staff KS staff LSF staff ZP Ugrad DH PhD RU Ugrad NH Ugrad MC Ugrad SL Ugrad NG Ugrad CS PhD OB PhD OB PhD MB PhD EJ Ugrad RM Ugrad RW Ugrad SJ Ugrad SL Ugrad BL Staff BG Ugrad AP PhD PS staff VM staff LG Staff CC PhD SZ Ugrad NM PhD MJ staff AG PhD FGC PhD
 
Description Partnership between the Institute for Gravitational Research and the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) - MPitkin 
Organisation Australian Research Council
Country Australia 
Sector Public 
PI Contribution The partnership funded a two week visit to the OzGrav institutions in Melbourne, Australia, for Dr Matthew Pitkin. During the visit he presented seminars at each institution, participated in and chaired workshop sessions, and developed collaborative projects in gravitational-wave astronomy.
Collaborator Contribution The partner contributed funds for travel and accommodation via the OzGrav International Visitor Funding Program.
Impact The main outcome is the development of software (bibly https://lscsoft.docs.ligo.org/bilby/index.html) and an associated paper (https://arxiv.org/abs/1811.02042) that will become the main package for source parameter estimation for gravitational-wave signals within the LIGO Scientific Collaboration and Virgo Collaboration.
Start Year 2018
 
Description Royal Society International Partnership with Russia: "Improving low-frequency sensitivity of future Gravitational Wave Observatories" 
Organisation Moscow State University
Country Russian Federation 
Sector Academic/University 
PI Contribution The University in Glasgow provides experimental expertise in interferometry as well as access to the 10m prototype interferometer as well as to the materials characterisation and loss measurement facilities.
Collaborator Contribution The team at Moscow State University provides theoretical expertise in the analysis of quantum limited systems, as well as experimental facilities for mechanical loss measurements complementary to the ones available in Glasgow.
Impact E. Knyazev et al.: "Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement," Physics Letters A, 10.1016/j.physleta.2017.10.009, 2017 S. L. Danilishin et al.,: "A new type of quantum speed meter interferometer: measuring speed to search for intermediate mass black holes" Light: Science & Applications (2018) 7, doi: 10.1038/s41377-018-0004-2 L. G. Prokhorov et. al,: "Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator" Physics Letters A, 10.1016/j.physleta.2017.07.007 A joint application to the EU Quantum Technology flagship call (proposal currently under evaluation).
Start Year 2016
 
Description Royal Society International Partnership with Russia: "Improving low-frequency sensitivity of future Gravitational Wave Observatories" 
Organisation University of Glasgow
Country United Kingdom 
Sector Academic/University 
PI Contribution The University in Glasgow provides experimental expertise in interferometry as well as access to the 10m prototype interferometer as well as to the materials characterisation and loss measurement facilities.
Collaborator Contribution The team at Moscow State University provides theoretical expertise in the analysis of quantum limited systems, as well as experimental facilities for mechanical loss measurements complementary to the ones available in Glasgow.
Impact E. Knyazev et al.: "Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement," Physics Letters A, 10.1016/j.physleta.2017.10.009, 2017 S. L. Danilishin et al.,: "A new type of quantum speed meter interferometer: measuring speed to search for intermediate mass black holes" Light: Science & Applications (2018) 7, doi: 10.1038/s41377-018-0004-2 L. G. Prokhorov et. al,: "Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator" Physics Letters A, 10.1016/j.physleta.2017.07.007 A joint application to the EU Quantum Technology flagship call (proposal currently under evaluation).
Start Year 2016
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation Cardiff University
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation Indian Institute of Technology Madras
Country India 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation Inter-University Centre for Astronomy and Astrophysics (IUCAA)
Country India 
Sector Learned Society 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation Tata Institute of Fundamental Research
Country India 
Sector Public 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of Birmingham
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of Glasgow
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of Sheffield
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of Southampton
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of Strathclyde
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Description STFC Newton-Bhabha: Capacity Building for LIGO-India 
Organisation University of the West of Scotland
Country United Kingdom 
Sector Academic/University 
PI Contribution Glasgow will be hosting a UK focused meeting in April 2018, also staff visits of colleagues from RRCAT and IIT Bombay.
Collaborator Contribution Partners are contributing staff for exchanges, Indian partners will contribute in-kind support of staff & computing time.
Impact MOU between UK and Indian institutes Collaboration agreement signed between UK and Indian institutes Just starting a print run of a book in general relativity, to be distributed to Indian schools
Start Year 2017
 
Title Gravitational Wave Search Software 
Description Software to perform searches for gravitational waves associated with astrophysical triggers. 
Type Of Technology Software 
Year Produced 2010 
Open Source License? Yes  
Impact Used for many observational results publications by LIGO. 
URL https://trac.ligo.caltech.edu/xpipeline/
 
Title Gravitational Wave Search Software 
Description Software to perform searches for gravitational waves emitted by merging black holes and neutron stars. 
Type Of Technology Software 
Year Produced 2015 
Open Source License? Yes  
Impact This software was used in the detection of gravitational waves. 
URL https://github.com/ligo-cbc/pycbc
 
Title Gravitational Wave Search Software 
Description Software to perform searches for gravitational waves emitted by merging black holes and neutron stars. 
Type Of Technology Software 
Year Produced 2015 
Open Source License? Yes  
Impact This software was used in the detection of gravitational waves. 
URL https://github.com/ligo-cbc/pycbc
 
Title Publication and presentation software 
Description The LIGO Scientific Collaboration comprises over 1,000 scientists. We have developed a web-based tool that tracks the publications written and presentations given by the members of the collaboration. The Collaboration performs an internal review of these materials prior to release, and the tool has vastly simplified this process, saving countless hours of researcher time. 
Type Of Technology Webtool/Application 
Year Produced 2014 
Impact The webtool is used regularly by members of the collaboration. It is a significant improvement over a previous, email based, system. The new system as save countless hours of researcher time in circulating and reviewing these publications and presentations. 
URL https://pnp.ligo.org/
 
Title Voting software 
Description A voting tool for the LIGO Scientific Collaboration that makes use of collaboration identity management to restrict access to the appropriate groups. 
Type Of Technology Software 
Year Produced 2013 
Impact This software is widely used within the LIGO Scientific Collaboration, comprising 1,000 scientists. It is easy to use and well liked. 
URL https://vote.ligo.org/
 
Description "Star Attractions at the Museum" at National Museum Cardiff 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact Public talk on gravitational waves.
Year(s) Of Engagement Activity 2017
 
Description Ascoltare le voci dell'Universo (Listening the voices of the Universe) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact Ascoltare le voci dell'Universo (Listening the voices of the Universe), a two-hour invited outreach talk on gravitational waves and their first detection given at the liceo scientifico statale Nomentano (Nomentano high school), Rome, Italy [01/06/2016]
Year(s) Of Engagement Activity 2016
 
Description Black hole hunter 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Type Of Presentation Workshop Facilitator
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Developed the Black Hole Hunter game to give the public insight into how gravitational wave searches are performed. The game was updated at the time of the first gravitational wave detection. It has had over 50000 page views since the detectio, and 14000 unique visitors since the detection.


Tens of thousands of members of the public have played the game. It is widely used in outreach exhibits around the world and has been translated into French, Spanish and German
Year(s) Of Engagement Activity 2008,2009,2010,2011,2012
URL http://blackholehunter.org/
 
Description Can you hear black holes 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? Yes
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact This was a Royal Society Summer exhibition. An estimated 4000 people passed through our stand in 3 days.

Exhibits were developed and in particular the online black hole hunger game was developed for the exhibition.
Year(s) Of Engagement Activity 2008
 
Description Hay Festival, 30 June 2016, Hay-on-Wye, UK 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Talk on gravitational wave discovery at Hay Festival, 30 June 2016, Hay-on-Wye, UK.
Year(s) Of Engagement Activity 2016
 
Description Interview - LIGO detects whispers of another black-hole merger, Nature, 15 June 2016 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Quoted in Nature article.
Year(s) Of Engagement Activity 2016
 
Description Interview - The black-hole collision that reshaped physics, Nature, 23 March 2016 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Interview for Nature article.
Year(s) Of Engagement Activity 2016
 
Description Relativita, Festival Delle Scienze, 22 May 2016 Rome, Italy 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Participated in science festival.
Year(s) Of Engagement Activity 2016
 
Description Scienceface interview 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact 2017.09.22 Einstein's former summer house, Caputh, Germany: Interviewed on film for a new episode of the Scienceface series; film presently being edited for publication later in 2017.
Year(s) Of Engagement Activity 2016,2017
 
Description The First Ever Detection of Gravitational Waves 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Short video describing the first observation of gravitational waves. Posted on YouTube and viewed by over 10,000 people.
Year(s) Of Engagement Activity 2016
URL https://www.youtube.com/watch?v=Lcxt097G4Ps
 
Description The First Sounds of the Cosmic Symphony 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact The First Sounds of the Cosmic Symphony, a stand-up talk on gravitational-wave research activity for the general public, Chapter Arts Centre, Cardiff [14/10/2016]
Year(s) Of Engagement Activity 2016