Astrophysics Research at the University of Leicester
Lead Research Organisation:
University of Leicester
Department Name: Physics and Astronomy
Abstract
We will deliver world-class research programmes in astrophysics through the exploitation of data from space missions and ground based telescopes, as well as the development of new theories and the numerical simulation of processes in these areas. We will also develop new instrumental techniques and detectors for future missions and telescopes. The research programme is based mainly around two research groups, with some participation by three others. These groups conduct their own research projects but also have a strong ethos of collaboration on topics of mutual interest.
Our research seeks to understand basic processes in our own and other galaxies, addressing questions of great interest to the wider public. We will search for new planets orbiting nearby stars which may mimic the planets that are present in our own solar system or possibly be very different, such as hot Neptunes, or Super Earths.
We will investigate some of the most extreme environments in our Universe by high energy astrophysics research focusing on extreme phenomena ranging from Galactic black hole binaries, through to active galactic nuclei and gamma-ray bursts. These studies will include the feedback processes that link black holes to the evolution of their host galaxies.
We will maintain and enhance a programme in stellar astronomy with emphasis on the astrophysics of white dwarf stars. We will be using high performance computers to simulate these systems theoretically. This in turn will help our observations and vice versa. Through these simulations we will build theories and models of how these extreme systems behave. We will use these simulations to try to understand the `dark' matter which constitutes much of the material
content of the Universe. We will use laboratory experimentation to develop new ways to observe these phenomena, building new instruments for the next generation of space missions.
This work also offers spin-off activities which often drive progress in areas far removed from astrophysics. Our department has an active programme of engagement with the wider community, particularly school age children, who are thrilled to hear about research in the Department. We will maintain a strong commitment to knowledge transfer for academic beneficiaries.
Our research seeks to understand basic processes in our own and other galaxies, addressing questions of great interest to the wider public. We will search for new planets orbiting nearby stars which may mimic the planets that are present in our own solar system or possibly be very different, such as hot Neptunes, or Super Earths.
We will investigate some of the most extreme environments in our Universe by high energy astrophysics research focusing on extreme phenomena ranging from Galactic black hole binaries, through to active galactic nuclei and gamma-ray bursts. These studies will include the feedback processes that link black holes to the evolution of their host galaxies.
We will maintain and enhance a programme in stellar astronomy with emphasis on the astrophysics of white dwarf stars. We will be using high performance computers to simulate these systems theoretically. This in turn will help our observations and vice versa. Through these simulations we will build theories and models of how these extreme systems behave. We will use these simulations to try to understand the `dark' matter which constitutes much of the material
content of the Universe. We will use laboratory experimentation to develop new ways to observe these phenomena, building new instruments for the next generation of space missions.
This work also offers spin-off activities which often drive progress in areas far removed from astrophysics. Our department has an active programme of engagement with the wider community, particularly school age children, who are thrilled to hear about research in the Department. We will maintain a strong commitment to knowledge transfer for academic beneficiaries.
Planned Impact
The applicants offer a diverse skill set that constitute a valuable resource to the private and public sectors. We have extensive experience and expertise in e.g. data analysis and handling, spacecraft and mission management, algorithm design, software engineering and high performance computing. Exploitation of this expertise is supported at all levels within the University. The Department of Physics and Astronomy is committed to
promoting and maximising the impact of our research. The College of Science and Engineering plays a leading role in the Enterprise Agenda for the University and offers dedicated enterprise officers and impact enhancing resources. Further support is provided by the University's Enterprise and Business Development Office, which works with academics and external stakeholders to create maximum impact in the local, provide national, and international community. This structure (i) delivers enterprising impact through the alignment of our research with major global and industrial challenges, (ii) identifies and addresses the opportunities to play a positive role in the economic development of our region and the UK, (iii) utilises research and related activities to develop skills and capability within a broad spectrum of the public and private sectors, (iv) provides expert advice and
guidance to industry and policy makers, (v) ensures that its intellectual property is effectively transferred and disseminated, and (vi) contributes to the wider cultural benefit of society through an enterprising and engaging outreach programme.
The long term impact strategy has four elements:
(1) to support and develop the skills and experience of the applicants;
(2) to ensure that links with public and private sector industries are developed, cultivated and maximised;
(3) to disseminate knowledge, skills and expterise to the benefit of the local, national and international business and civic communities;
(4) to sustain and develop our successful outreach programme with particular emphasis on enhancing our efforts to develop valid outcome measures.
promoting and maximising the impact of our research. The College of Science and Engineering plays a leading role in the Enterprise Agenda for the University and offers dedicated enterprise officers and impact enhancing resources. Further support is provided by the University's Enterprise and Business Development Office, which works with academics and external stakeholders to create maximum impact in the local, provide national, and international community. This structure (i) delivers enterprising impact through the alignment of our research with major global and industrial challenges, (ii) identifies and addresses the opportunities to play a positive role in the economic development of our region and the UK, (iii) utilises research and related activities to develop skills and capability within a broad spectrum of the public and private sectors, (iv) provides expert advice and
guidance to industry and policy makers, (v) ensures that its intellectual property is effectively transferred and disseminated, and (vi) contributes to the wider cultural benefit of society through an enterprising and engaging outreach programme.
The long term impact strategy has four elements:
(1) to support and develop the skills and experience of the applicants;
(2) to ensure that links with public and private sector industries are developed, cultivated and maximised;
(3) to disseminate knowledge, skills and expterise to the benefit of the local, national and international business and civic communities;
(4) to sustain and develop our successful outreach programme with particular emphasis on enhancing our efforts to develop valid outcome measures.
Organisations
Publications

Abbott B
(2016)
SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914" (2016, ApJL, 826, L13)
in The Astrophysical Journal Supplement Series

Abbott B
(2017)
Multi-messenger Observations of a Binary Neutron Star Merger *
in The Astrophysical Journal Letters

Abbott B
(2016)
LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914
in The Astrophysical Journal Letters

Abdalla H
(2016)
H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center.
in Physical review letters

Abdalla H
(2021)
Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with H.E.S.S.
in The Astrophysical Journal

Abdallah H
(2021)
Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with H.E.S.S.
in Physical Review D

Acero F.
(2017)
Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017)
in arXiv e-prints


Alexander K
(2017)
A Reverse Shock and Unusual Radio Properties in GRB 160625B
in The Astrophysical Journal
Description | Further progress in a variety of fields of astrophysics. |
Exploitation Route | Further research in various areas of astrophysics. |
Sectors | Education |
Description | Royal Society Research Grant |
Amount | £13,055 (GBP) |
Funding ID | RG170230 |
Organisation | The Royal Society |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 09/2017 |
End | 10/2018 |
Description | Creativity and Curiosity - Art meets astronomy |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | The project started as a discussion between artists and astronomers to stimulate new art and engage with new audiences. Events have included exhibitions of the artworks and associated discussion events across the county and abroad. |
Year(s) Of Engagement Activity | 2017 |
URL | https://www.creativityandcuriosity.com |
Description | US NSF announcement of discovery of first gravitational wave source with electromagnetic counterpart - Oct 2017 |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | US National Science Foundation press release. |
Year(s) Of Engagement Activity | 2017 |
URL | https://www.ligo.caltech.edu/page/press-release-gw170817 |
Description | Various school visits, astronomical society lectures |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Schools |
Results and Impact | Many presentations, 100s of students, excellent questions and discussion. Audience figures are totals for activities during each year. Improvements in interest in applying for science degrees |
Year(s) Of Engagement Activity | 2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021 |