DiRAC 2.5 - the pathway to DiRAC Phase 3

Lead Research Organisation: University of Leicester
Department Name: Physics and Astronomy

Abstract

Physicists across the astronomy, nuclear and particle physics communities are focussed
on understanding how the Universe works at a very fundamental level. The distance scales
with which they work vary by 50 orders of magnitude from the smallest distances probed
by experiments at the Large Hadron Collider, deep within the atomic
nucleus, to the largest scale galaxy clusters discovered out in space. The Science challenges,
however, are linked through questions such as: How did the Universe begin and how is it evolving?
and What are the fundamental constituents and fabric of the Universe and how do they interact?

Progress requires new astronomical observations and experimental data but also
new theoretical insights. Theoretical understanding comes increasingly from large-scale
computations that allow us to confront the consequences of our theories very accurately
with the data or allow us to interrogate the data in detail to extract information that has
impact on our theories. These computations test the fastest computers that we have and
push the boundaries of technology in this sector. They also provide an excellent
environment for training students in state-of-the-art techniques for code optimisation and
data mining and visualisation.

The DiRAC-2.5 project builds on the success of the DiRAC HPC facility and will provide the resources needed
to support cutting edge research during 2017 in all areas of science supported by STFC.

In particular, DiRAC-2.5 will provide:

1) A factor 2 increase in the computational power of the DiRAC supercomputer at the University of Durham, which is designed for simulations requiring large amounts of computer memory. The enhanced system will be used to:
(i) simulate the merger of pairs of black holes which generate gravitational waves such as those recently discovered by the LIGO consortium;
(ii) perform the most realistic simulations to date of the formation and evolution of galaxies in the Universe
(iii) carry out detailed simulations of the interior of the sun and of planetary interiors.

2) A new High Performance Computer whose particular architecture is well suited to the theoretical
problems that we want to tackle that utilise large amounts of data, either as input or
being generated at intermediate stages of our calculations. Two key challenges
that we will tackle are those of
(i) improving our understanding of the Milky Way through analysis of new data from the European
Space Agency's GAIA satellite and
(ii) improving the potential of experiments at CERN's Large Hadron Collider for discovery
of new physics by increasing the accuracy of theoretical predictions for rare processes involving the
fundamental constituents of matter known as quarks.

Planned Impact

The expected impact of DiRAC-2.5 is fully described in the pathways to impact section of the case for support and includes:

1) Disseminating best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.

2) Working on co-design projects with industry partners to improve future generations of hardware and software.

3) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use this new technology to improve research outcomes in their areas.

4) Share best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners.

5) Training of the next generation of research scientists of physical scientists to tackle problems effectively on state-of-the-art of High Performance Computing facilities. Such skills are much in demand from high-tech industry.

6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.

Publications

10 25 50
publication icon
Adamek Julian (2019) Safely smoothing spacetime: backreaction in relativistic cosmological simulations in Classical and Quantum Gravity

publication icon
Arthur Jake (2017) nIFTy galaxy cluster simulations - V. Investigation of the cluster infall region in Monthly Notices of the Royal Astronomical Society

publication icon
Ballabio G. (2018) Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code in Monthly Notices of the Royal Astronomical Society

publication icon
Bate M (2019) The statistical properties of stars and their dependence on metallicity in Monthly Notices of the Royal Astronomical Society

publication icon
Beckmann R. S. (2018) Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes in Monthly Notices of the Royal Astronomical Society

publication icon
Beckmann R. S. (2019) Zooming in on supermassive black holes: how resolving their gas cloud host renders their accretion episodic in Monthly Notices of the Royal Astronomical Society

 
Description Many new discoveries about the formation and evolution of galaxies, star formation, planet formation have been made possible by the award.
Exploitation Route Many international collaborative projects are supported by the HPC resources provided by DiRAC.
Sectors Digital/Communication/Information Technologies (including Software),Education

URL http://www.dirac.ac.uk
 
Description Major co-design project with Hewlett Packard Enterprise, including partnership in the HPE/Arm/Suse Catalyst UK programme.
First Year Of Impact 2017
Sector Digital/Communication/Information Technologies (including Software)
Impact Types Societal

 
Description DiRAC 2.5x Project Office 2017-2020
Amount £300,000 (GBP)
Organisation Science and Technologies Facilities Council (STFC) 
Sector Academic/University
Country United Kingdom
Start 02/2018 
End 03/2020
 
Title Citation analysys and Impact 
Description Use of IT to determineacademic impact of eInfrastructure 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact Understood emerging trends in DiRAC Science and helped decide the scale and type of IT investments and direct us to develop new technologies 
URL http://www.dirac.ac.uk
 
Description Co-design project with Hewlett Packard Enterprise 
Organisation Hewlett Packard Enterprise (HPE)
Country United Kingdom 
Sector Private 
PI Contribution Technical support and operations costs for running the hardware. Research workflows to test the system performance, and investment of academic time and software engineering time to optimise code for new hardware. Project will explore suitability of hardware for DiRAC workflows and provide feedback to HPE.
Collaborator Contribution In-kind provision of research computing hardware. Value is commercially confidential.
Impact As this collaboration is about to commence, there are no outcomes to report at this point.
Start Year 2018
 
Description Nuclei from Lattice QCD 
Organisation RIKEN
Department RIKEN-Nishina Center for Accelerator-Based Science
Country Japan 
Sector Public 
PI Contribution Surrey performed ab initio studies of LQCD-derived nuclear forces
Collaborator Contribution Work by Prof. Hatsuda and collaborators at the iTHEMS and Quantum Hadron Physics Laboratory to provide nuclear forces derived from LQCD
Impact Phys. Rev. C 97, 021303(R)
Start Year 2015
 
Description STFC Centres for Doctoral Training in Data Intensive Science 
Organisation University of Leicester
Department STFC DiRAC Complexity Cluster (HPC Facility Leicester)
Country United Kingdom 
Sector Academic/University 
PI Contribution Support for STFC Centres for Doctoral Training (CDT) in Data Intensive Science - DiRAC is a partner in five of the eight of the newly established STFC CDTs, and is actively engaged with them in developing industrial partnerships. DiRAC is also offering placements to CDT students interested in Research Software Engineering roles.
Collaborator Contribution Students to work on interesting technical problems for DiRAC
Impact This is the first year
Start Year 2017
 
Description Surrey-Saclay 
Organisation Saclay Nuclear Research Centre
Country France 
Sector Public 
PI Contribution Provided codes and know-how to develop GF Gorkov formalism and implementation.
Collaborator Contribution Help spreading and advertise my research
Impact Presentation of preliminary results at conference. Grant still ongoing. Results being written up. Output will be first ab-initio calculation of fully open shells.
Start Year 2010