Maximising throughput in multiwavelength optical networks operating in nonlinear regime

Lead Research Organisation: University College London
Department Name: Electronic and Electrical Engineering

Abstract

High-capacity, low-delay ubiquitous broadband communication infrastructure is critical to the development and grown of the digital economy. Optical fibres
form the backbone of this infrastructure and must ensure sufficient capacity for the development of new, high-capacity life transforming services. However, optical fibre channels are nonlinear. The capacity of nonlinear channels
is unknown and the research is focused on the development of appropriate channel models to enable the calculation of achievable information rates for different modulation formats and symbol rates and any increases
which can be achieved through nonlinearity mitigation and coding. Whilst increases in achievable rates with these techniques may be limited for point-to-point links, they could be translated in significant gains in network throughput when applied to network topologies. This requires the combination of information theory for nonlinear channels and graph theory for quantifying network throughputs as a function of both the network topology and nonlinear channel properties. Potentially this research could transform he design of optical network architectures and the design of the data communications infrastructure as a whole. The student's research focuses on the ananlysis of optical fibre systems and network performance when operated over significantly wider bandwidths than used currently. Expansion of the optical fibre bandwidth operating range requires the analysis of stimulated Raman scattering for coherent optical fibre transmission, not analysed to date, the development of rapid analytical tools for systems and networks analysis and the quantification of the network throughputs in the wideband nonlinear regime.
Relevance to EPSRC thematic areas: ICT with strategic priorities in Towards Intelligent Information Infrastructure and Photonics for future systems; Digital Economy in areas Digital Signal Processing, ICT Networks.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/N509577/1 01/10/2016 24/03/2022
1673366 Studentship EP/N509577/1 01/12/2015 30/11/2018 Daniel Semrau
 
Description I developed novel analytical models that predict the performance of next-generation, ultra-wideband optical transmission systems. The findings are crucial in the design and real-time optimization of transmission systems that operate over bandwidths beyond the conventional C-band (5 THz).
Exploitation Route My findings can be used to optimize optical networks on the network layer. My findings abstract the physical layer of an optical transmission system and provide higher communications layers with easy but yet accurate optimization tools. This can lead to a more intelligently managed network architectures aware of the physical properties of the underlying transmission medium.
Sectors Digital/Communication/Information Technologies (including Software),Electronics

 
Description Conference Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I presented an accepted paper at the European Conference on Optical Communications (ECOC) in Rome, Italy.
Year(s) Of Engagement Activity 2018
 
Description Talk at Nokia Bell Labs US 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I presented my work at Nokia Bell Labs US talking about my recent research advances and the modeling of nonlinear effects in ultra-wideband transmission systems.
Year(s) Of Engagement Activity 2018
 
Description Talk at TE SubCom 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I presented my work at TE SubCom talking about modeling nonlinear effects in ultra-wideband transmission systems.
Year(s) Of Engagement Activity 2018
 
Description Workshop Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I gave a presentation at a workshop organized by UCL on next generation optical networks.
Year(s) Of Engagement Activity 2018