Isoprene monooxygenase: a missing link in the global isoprene cycle
Lead Research Organisation:
University of East Anglia
Department Name: Environmental Sciences
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
People |
ORCID iD |
John Murrell (Primary Supervisor) | |
Leanne Sims (Student) |
Studentship Projects
Project Reference | Relationship | Related To | Start | End | Student Name |
---|---|---|---|---|---|
BB/M011216/1 | 30/09/2015 | 31/03/2024 | |||
1800133 | Studentship | BB/M011216/1 | 30/09/2016 | 29/09/2020 | Leanne Sims |
Description | The substrate specificity, inhibition by alkynes and kinetics of the isoprene monooxygenase system from Rhodococcus sp. AD45 in the whole-cell system has been determined. This will allow a greater environmental understanding of the microbial oxidation of the climate-active gas isoprene. Three of the four components of the enzyme system have been purified; the oxygenase, Rieske protein and coupling protein. Attempts to purify the reductase have been unsuccessful due to instability, inclusion bodies and precipitation after affinity chromatography. Reconstitution of an active complex has not yet been achieved. The Rieske protein has been extensively characterised by spectroscopic techniques and mass spectrometry. I (Leanne) hope to complete this objective by the end of the funding period in October 2020. |
Exploitation Route | The alkyne inhibition profile may be used to determine how much environmental isoprene oxidation is being performed by bacteria containing the isoprene monooxygenase, as opposed to cooxidation by alternative soluble diiron monooxygenases (SDIMOs). The substrate specificity will inform future research on SDIMOs as biocatalysts, and what SDIMO characteristics influence substrate specificity. A fully purified and reconstituted isoprene monooxygenase complex, if achieved, could be used to inform biocatalysis studies of SDIMOs and be used to understand the enzyme's vital role in biological degradation of isoprene. |
Sectors | Environment Manufacturing including Industrial Biotechology |