Spectral embedding of large graphs and dynamic networks

Lead Research Organisation: University of Bristol
Department Name: Mathematics

Abstract

The ubiquity of large-scale networks in almost every domain area and the increasing value of insights they can provide, has motivated tremendous growth in principled statistical methodologies for their analysis. Application areas include cyber-security (e.g. intrusion detection), biology (e.g. super-resolution microscopy data) and fraud detection as well as many others which new methodologies might unlock. This project will advance methods for estimation and inference on large-scale networks, including extensions beyond simple, static graphs. In particular, the project will extend methods for unipartite networks to bipartite and multipartite settings, and for static networks to dynamic networks whose generative mechanism evolves in continuous time. Theoretical and empirical analyses will be complemented by the development of open-source software which implements the new methodologies. The research project will develop methods for latent position network models, in which graphs are represented as point clouds, and a class of estimation procedures known as spectral embedding, in which estimates are obtained from the scaled eigenvectors of the graph adjacency or Laplacian matrix. The generalised random dot product graph is one such model for which theoretical results give fine statistical control on the error of estimates obtained by spectral embedding. These results will be leveraged to develop new tools to model other types of matrix-valued data and to better exploit the underlying geometry of the resulting point clouds.

Planned Impact

The COMPASS Centre for Doctoral Training will have the following impact.

Doctoral Students Impact.

I1. Recruit and train over 55 students and provide them with a broad and comprehensive education in contemporary Computational Statistics & Data Science, leading to the award of a PhD. The training environment will be built around a set of multilevel cohorts: a variety of group sizes, within and across year cohort activities, within and across disciplinary boundaries with internal and external partners, where statistics and computation are the common focus, but remaining sensitive to disciplinary needs. Our novel doctoral training environment will powerfully impact on students, opening their eyes to not only a range of modern technical benefits and opportunities, but on the power of team-working with people from a range of backgrounds to solve the most important problems of the day. They will learn to apply their skills to achieve impact by collaborative working with internal and external partners, such as via our Rapid Response Teams, Policy Workshops & Statistical Clinics.

I2. As well as advanced training in computational statistics and data science, our students will be impacted by exposure to, and training in, important cognate topics such as ethics, responsible innovation, equality, diversity and inclusion, policy, effective communication and dissemination, enterprise, impact and consultancy skills. It is vital for our students to understand that their training will enable them to have a powerful impact on the wider world, so, e.g., AI algorithms they develop should not be discriminatory, and statistical methodologies should be reproducible, and statistical results accurately and comprehensibly communicated to the general public and policymakers.

I3. The students will gain experience via collaborations with academic partners within the University in cognate disciplines, and a wide range of external industrial & government partners. The students will be impacted by the structured training programmes of the UK Academy of Postgraduate Training in Statistics, the Bristol Doctoral College, the Jean Golding Institute, the Alan Turing Institute and the Heilbronn Institute for Mathematical Sciences, which will be integrated into our programme.

I4. Having received an excellent training, the students will then impact powerfully on the world in their future fruitful careers, spreading excellence.

Impact on our Partners & ourselves.

I5. Direct impacts will be achieved by students engaging with, and working on projects with, our academic partners, with discipline-specific problems arising in engineering, education, medicine, economics, earth sciences, life sciences and geographical sciences, and our external partners Adarga, the Atomic Weapons Establishment, CheckRisk, EDF, GCHQ, GSK, the Office for National Statistics, Sciex, Shell UK, Trainline and the UK Space Agency. The students will demonstrate a wide range of innovation with these partners, will attract engagement from new partners, and often provide attractive future employment matches for students and partners alike.

Wider Societal Impact

I6. COMPASS will greatly benefit the UK by providing over 55 highly trained PhD graduates in an area that is known to be suffering from extreme, well-known, shortages in the people pipeline nationally. COMPASS CDT graduates will be equipped for jobs in sectors of high economic value and national priority, including data science, analytics, pharmaceuticals, security, energy, communications, government, and indeed all research labs that deal with data. Through their training, they will enable these organisations to make well-informed and statistically principled decisions that will allow them to maximise their international competitiveness and contribution to societal well-being. COMPASS will also impact positively on the wider student community, both now and sustainably into the future.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023569/1 01/04/2019 30/09/2027
2266418 Studentship EP/S023569/1 01/10/2019 30/09/2023 Alexander Modell