Application of novel ceramic synthesis to the development of lithium-containing fuels for nuclear fusion

Lead Research Organisation: University of Sheffield
Department Name: Materials Science and Engineering

Abstract

Nuclear fusion is an attractive alternative to fission because it offers the potential for power generation without the production of greenhouse gases and long-lived radioactive waste. One of the greatest challenges in adopting fusion lies in developing materials that can withstand the extreme environment of a fusion reactor, where isotopes of hydrogen, deuterium and tritium, will fuse together, releasing enormous amounts of energy. It is proposed that tritium will be produced within the fusion reactor, in a region called the breeder blanket, with lithium-containing ceramics as candidates for the tritium breeder material.
Tritium extraction from the breeder is dependent on breeder material density, with optimum tritium recovery reported in samples with >90% of theoretical density. Lithium reacts with air and so it is difficult to produce dense ceramics using standard methods. Furthermore, nano-scale defects have been observed in Li-ceramics produced by standard methods, which could have serious implications for the suitability of these materials as a fuel for fusion.
At the University of Sheffield, we have developed novel low-temperature synthesis methods, which show great promise in producing dense, Li-ceramics. This project will explore the use of these methods to produce defect free, dense Li-ceramics for fusion. Once fabricated, the in-reactor performance of these materials will be determined using techniques that simulate experimentally the impact of the fusion environment on materials.

Publications

10 25 50