Systems Biology of Hydrogen Oxidising Bacteria for the Production of High Quality Feed Protein and Other Feed Ingredients

Lead Research Organisation: University of Nottingham
Department Name: School of Life Sciences


The world's population is predicted to reach 10 billion by 2050, requiring significant increases in food production. The intake of protein per person is also expected to rise sharply. Hence, a substantial increase in food protein production is needed to meet demands. Conventional sources of protein are linked to greenhouse gas emissions and impact on biodiversity. Hence, there is an urgent need for innovative, sustainable protein production at scale. Hydrogen oxidising bacteria are a promising alternative as a sustainable source of so-called single cell protein. These bacteria fix CO2 and generate protein-rich biomass using hydrogen as a source of energy.

Aims and approach: The proposed study will be undertaken in close collaboration with our industrial partner, Deep Branch Biotechnology Ltd (, a Nottingham based company that is revolutionising the use of bacteria to capture industrial carbon into feed ingredients. The nutritional value of a feed or food product strongly depends on cellular protein content and composition. A deeper understanding of how different bacterial growth conditions impact these parameters would be beneficial to industry and further our scientific understanding of bacterial cell metabolism. Using a set of model organisms and industrial strains, the project will seek to address this by systematic variation of culturing conditions, compositional analysis of the created biomass and omics analysis of bacterial cells grown under the different conditions. In combination with predictive modelling the generated data will help to establish the molecular basis of the observed changes and potential underlying mechanisms. Conditions found to be favourable in the laboratory will be tested at large scale with industrially produced CO2. As part of the offered training, Deep Branch Biotechnology will offer the opportunity to gain experience at an industrial site.


10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
BB/T008369/1 30/09/2020 29/09/2028
2432083 Studentship BB/T008369/1 30/09/2020 29/09/2024