📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

High Power Microwave Amplifiers to generate smart waveforms for magnetic resonance spectroscopy

Lead Research Organisation: University of Strathclyde
Department Name: Physics

Abstract

Fast wave amplifiers offer potential to generate extremely high power microwave pulses. A recent innovation impacting high power microwave amplifiers is the introduction of a weak helical corrugation on the inner wall of nominally cylindrical waveguide. Such a corrugation results in new solutions (eigenmodes) to Maxwell's equations, which may be thought of as a coupling of space harmonics of the modes of an uncorrugated waveguide. Depending on the exact geometry chosen for the corrugation, these new modes can exhibit a nearly constant group velocity in a region where the phase velocity tends to infinity. This arrangement is ideal for tuneable fast wave amplifiers, since the linear dispersion can overlap with the dispersion of a cyclotron mode of an electron beam over a wide frequency range giving wide bandwidth, whilst enhancing efficiency and mitigating against the risk of spurious oscillation. Such amplifiers have demonstrated megawatt capability in the X-band (around 10GHz) with 20% instantaneous bandwidth and efficiency approaching 30%. It is also an ideal wave dispersion for tuneable oscillators where the frequency of the source can be adjusted by changing the magnetic field which supports the electron cyclotron motion of a large orbit beam at the 2nd electron cyclotron harmonic.
Here we propose to study tuneable backward wave oscillators and amplifiers in WR-2.2 waveguide band (320GHz to 500GHz) for magnetic resonance spectroscopy applications. We will initially design and construct a tuneable backward wave oscillator in the 360GHz to 395GHz frequency range applying ideas such as the use of a large diametre 5-fold helically corrugated waveguide interaction region. We will also develop new theory and computational models of gyrotron travelling wave amplifiers based on a 5-fold helically corrugated interaction region operating in the 365GHz to 395GHz frequency range.

People

ORCID iD

Jack Easton (Student)

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/T517938/1 30/09/2020 29/09/2025
2434709 Studentship EP/T517938/1 30/09/2020 31/03/2024 Jack Easton