Evolving Gels
Lead Research Organisation:
University of Glasgow
Department Name: School of Chemistry
Abstract
The aim of this project is to prepare new types of dynamic soft materials. We will develop new insights into dynamic and evolving self-assembled structures to prepare materials that change in a pre-programmed manner, forming structures with properties that cannot be directly accessed.
Gels are mainly liquid but behave as solids. The solid-like behaviour arises from a network, which immobilises the solvent. The networks can be permanent as in polymer gels. In comparison, supramolecular gels are formed by networks formed by non-covalent interactions; these networks can be readily disassembled, resulting in a return to a solution.
Typically, gels are formed and used with mechanical properties that do not change. However, dynamic systems are increasingly of interest. In dynamic gel systems, a gel is formed on application of an energy input or fuel. When the energy source is turned off or the fuel runs out, the system returns to its original, non-gelled state. Hence, transient gels can be formed which last as long as the fuel or energy inputted. Such gels are interesting, but currently, there are very few applications for such transient gels. This project focusses on dynamic materials which evolve and change with time. We will use the concepts of dynamic and transient systems to design and prepare genuinely useful new materials that are currently not accessible.
Gels are mainly liquid but behave as solids. The solid-like behaviour arises from a network, which immobilises the solvent. The networks can be permanent as in polymer gels. In comparison, supramolecular gels are formed by networks formed by non-covalent interactions; these networks can be readily disassembled, resulting in a return to a solution.
Typically, gels are formed and used with mechanical properties that do not change. However, dynamic systems are increasingly of interest. In dynamic gel systems, a gel is formed on application of an energy input or fuel. When the energy source is turned off or the fuel runs out, the system returns to its original, non-gelled state. Hence, transient gels can be formed which last as long as the fuel or energy inputted. Such gels are interesting, but currently, there are very few applications for such transient gels. This project focusses on dynamic materials which evolve and change with time. We will use the concepts of dynamic and transient systems to design and prepare genuinely useful new materials that are currently not accessible.
Organisations
People |
ORCID iD |
Dave Adams (Primary Supervisor) | |
Max Hill (Student) |
Studentship Projects
Project Reference | Relationship | Related To | Start | End | Student Name |
---|---|---|---|---|---|
EP/R513222/1 | 30/09/2018 | 29/09/2023 | |||
2441578 | Studentship | EP/R513222/1 | 30/09/2020 | 31/03/2024 | Max Hill |
EP/T517896/1 | 30/09/2020 | 29/09/2025 | |||
2441578 | Studentship | EP/T517896/1 | 30/09/2020 | 31/03/2024 | Max Hill |