A multifunctional biomimetic lab-on-a-chip assault course for agrochemical bioavailability screening

Lead Research Organisation: Imperial College London
Department Name: Dept of Chemistry

Abstract

A current challenge with the delivery of agrochemicals is their non-specific distribution throughout the plant. This is compounded by the lack of a systematic fundamental physicochemical based set of rules to effectively predict agrochemical bioavailability. This proposal aims to address this challenge by designing and establishing a modular on-chip model transport system that can mimic the various compartments and layers an agrochemical needs to traverse to gain access to its active-site within the plant. We propose to do this using automated droplet-based microfluidics that will enable the user to "dial up" in-vitro biologically relevant mimics of plant compartments and barriers. The resulting biomimicry toolkit will capture the key features of the molecular environments (molecular interactions, degree/length scale of compartmentalization, sequencing of barriers, types of barriers (e.g waxy cuticle vs biomembrane) at each phase of the bioavailability pathway. This will involve plugging together novel motifs including vesicles, multisomes, droplet interface bilayers, phase-separated domains and vesicle interface bilayers. Control of the end-to-end connectivity of motifs and being able to embed one motif within another motif will be features engineered into the resulting device. The fully integrated system will have added functionalities of dynamic and real-time molecule tracking across key stages of the assault course with read outs facilitated by fibre-optic based UV Vis, Raman Imaging, Mass Spec and HPLC depending on the assault course element under study. The device will enable us to screen a library of Syngenta's existing agrochemicals with defined physicochemical properties and to identify those molecules that can successfully cross key barriers in plants. Knowledge gained will facilitate the design of more effective agrochemicals that can cross plant structures beyond simple diffusion or ion trapping mechanisms and allow sitetargeted distribution of agrochemicals, leading to a more sustainable, economical and environmentally green approach to agrochemical use in agriculture.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023518/1 01/10/2019 31/03/2028
2450247 Studentship EP/S023518/1 03/10/2020 30/09/2024 Thomas Philip Kitto