📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

High-power vortex laser development for machining and optical levitation

Lead Research Organisation: Imperial College London
Department Name: Physics

Abstract

Lasers are exceptionally precise tools that can provide unrivalled control of the world around us, they form the bedrock of many modern technologies and manufacturing processes. Much research has been done on optimising their properties, for example their power or wavelength, but their spatial properties provide a degree of control that has only recently started to be exploited. Of particular interest are optical vortices, where the laser phase has a corkscrew shape giving the beam orbital angular momentum (OAM). Lasers with OAM provide a vast array of new technological opportunities that has gathered significant research interest.
This project will focus on the development of solid-state laser cavities that directly output these vortex modes at unrivalled powers and purities. This will involve scientific demonstrations of the technologies developed, but also include tailoring these designs to specific real-world applications. Of particular interest in this project is chiral nano-needle manufacture and optical levitation of reflective metal shells.
The student will be actively involved in the design, building and testing of these novel high-power vortex laser systems. The project is primarily experimental, but the laboratory work will be supported by theoretical and computational investigations of which there is significant scope to explore. This is an excellent opportunity to be involved in an interdisciplinary range of areas from fundamental laser science to applications, the student will work with collaborators at Imperial and abroad.

People

ORCID iD

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/T51780X/1 30/09/2020 29/09/2025
2475804 Studentship EP/T51780X/1 11/01/2021 30/07/2024