Reinforcement Learning for cellular control

Lead Research Organisation: University of Oxford


Brief Description of the context of the research including potential impact:

Synthetic biology has created many methods of controlling cells externally, via both chemical and physical methods, such as light. Typically the control is regulated by a simple algorithm, such as a PID controller. These are robust, but are unable to effectively regulate a complex cellular system. However, recent advancements have allowed for a greater number of cells to be analyzed at once, opening the door for data-driven methods such as reinforcement learning. This allows for controlling of much more complex cellular behaviors, with significantly less prior info.

Aims and Objectives:

The Aims of this PhD is to apply cutting edge reinforcement learning techniques to control cells. The first such aim is to regulate the fluorescence of genetically modified bacteria, and apply this to real world systems.

Novelty of the research methodology:

Typical biological control systems either utilize basic control theory, where a good model of the system is required. In this work, via the use of model-free learning and unsupervised environment design, we shall be able to control systems for which we do not have an advanced model.

Alignment to EPSRC's strategies and research areas:

This project aligns with many of EPSRC's research areas, such as Biological informatics, Artificial intelligence technologies, Control engineering and Mathematical biology.

Planned Impact

AIMS's impact will be felt across domains of acute need within the UK. We expect AIMS to benefit: UK economic performance, through start-up creation; existing UK firms, both through research and addressing skills needs; UK health, by contributing to cancer research, and quality of life, through the delivery of autonomous vehicles; UK public understanding of and policy related to the transformational societal change engendered by autonomous systems.

Autonomous systems are acknowledged by essentially all stakeholders as important to the future UK economy. PwC claim that there is a £232 billion opportunity offered by AI to the UK economy by 2030 (10% of GDP). AIMS has an excellent track record of leadership in spinout creation, and will continue to foster the commercial projects of its students, through the provision of training in IP, licensing and entrepreneurship. With the help of Oxford Science Innovation (investment fund) and Oxford University Innovation (technology transfer office), student projects will be evaluated for commercial potential.

AIMS will also concretely contribute to UK economic competitiveness by meeting the UK's needs for experts in autonomous systems. To meet this need, AIMS will train cohorts with advanced skills that span the breadth of AI, machine learning, robotics, verification and sensor systems. The relevance of the training to the needs of industry will be ensured by the industrial partnerships at the heart of AIMS. These partnerships will also ensure that AIMS will produce research that directly targets UK industrial needs. Our partners span a wide range of UK sectors, including energy, transport, infrastructure, factory automation, finance, health, space and other extreme environments.

The autonomous systems that AIMS will enable also offer the prospect of epochal change in the UK's quality of life and health. As put by former Digital Secretary Matt Hancock, "whether it's improving travel, making banking easier or helping people live longer, AI is already revolutionising our economy and our society." AIMS will help to realise this potential through its delivery of trained experts and targeted research. In particular, two of the four Grand Challenge missions in the UK Industrial Strategy highlight the positive societal impact underpinned by autonomous systems. The "Artificial Intelligence and data" challenge has as its mission to "Use data, Artificial Intelligence and innovation to transform the prevention, early diagnosis and treatment of chronic diseases by 2030". To this mission, AIMS will contribute the outputs of its research pillar on cancer research. The "Future of mobility" challenge highlights the importance the autonomous vehicles will have in making transport "safer, cleaner and better connected." To this challenge, AIMS offers the world-leading research of its robotic systems research pillar.

AIMS will further promote the positive realisation of autonomous technologies through direct influence on policy. The world-leading academics amongst AIMS's supervisory pool are well-connected to policy formation e.g. Prof Osborne serving as a Commissioner on the Independent Commission on the Future of Work. Further, Dr Dan Mawson, Head of the Economy Unit; Economy and Strategic Analysis Team at BEIS will serve as an advisor to AIMS, ensuring bidirectional influence between policy objectives and AIMS research and training.

Broad understanding of autonomous systems is crucial in making a society robust to the transformations they will engender. AIMS will foster such understanding through its provision of opportunities for AIMS students to directly engage with the public. Given the broad societal importance of getting autonomous systems right, AIMS will deliver core training on the ethical, governance, economic and societal implications of autonomous systems.


10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S024050/1 01/10/2019 31/03/2028
2579474 Studentship EP/S024050/1 01/10/2021 30/09/2025 Sebastian Towers