Investigating the potential threats posed to Smart Cities by the emergent capabilities of Quantum Technologies

Lead Research Organisation: University of Bristol
Department Name: Computer Science

Abstract

Smart Cities (SC), also known as Connected Places (CP), are emerging all over the world, in various guises. However, what they have in common is the promise of better living standards, more efficient resource usage and environmental
benefits, all provided through integrated systems that capitalise on digital information. But this information is vulnerable and, if compromised, could lead to security, trust and identity issues.

Quantum computing, as one example of emerging quantum technologies (QT), has been variously described as "here now", "coming soon" or "not for another 10 years"; so, what is truth? And what other QT capabilities will emerge, when,
and to what level of assurance? This project will examine the essential characteristics of SC, their governance, systems and underlying technical infrastructure, through an analysis of their reference architectures and work with UK Government agencies, leading to an assessment of the cybersecurity vulnerabilities of SC. It will then investigate the emergent capabilities of QT, focussing on the potential cybersecurity threats that they pose. Finally, the thesis will link the two analyses to prioritise the threats QT poses to SC and seek to propose methods that could enhance SC cybersecurity resilience against those threats.

Planned Impact

Who will benefit?

The inter-disciplinary doctoral graduates trained within the CDT will play a key role in addressing the acute shortage of highly skilled workers in this area, hence meeting industry and government needs. The research they will conduct in the CDT and their future work will strongly impact industry, government, academia and society. Industrial applications cover those involving large-scale, socio-technical infrastructures where resilience-at-scale is a fundamental need, such as, intelligent transportation, finance, digital healthcare, energy generation & distribution and advanced manufacturing. The globally unique capacity focusing on TIPS-at-Scale will position the UK as a world-leader, offering major economic benefits by ensuring that the UK is a safe place in which to do business, and social benefits in terms of security and privacy of the individual.

More specifically, the CDT's research and training programme will provide graduates with capabilities to address socio-technical challenges of TIPS-at-Scale, including understanding of user and adversarial behaviours. This is of major importance to digital infrastructure providers, government agencies and law enforcement agencies. This is in addition to the wider business and health sectors where the protection of data and the physical processes controlled by large-scale infrastructure is vital. Research on resilience in partially-trusted environments will lead to new architectures and new technologies to significantly enhance integrity and resilience, including new authentication methods and trust models. Research on empirically-grounded assurances for TIPS will break new ground by providing new interdisciplinary techniques and design principles to underpin infrastructures of the future. Last, but by no means least, by embedding Responsible Innovation into the programme throughout, the CDT ensures that TIPS-at-Scale approaches take a values-based view that considers TIPS across the full lifecycle of digital infrastructures: from conception to design, implementation and deployment through to maintenance, evolution and decommissioning. Such a Responsible Innovation approach will benefit society-at-large.

How will they benefit?

There is a critical need within the UK for a new breed of researchers and future leaders, equipped with a breadth of interdisciplinary skills to tackle TIPS issues at play in future infrastructures and a depth of knowledge, drawing upon interdisciplinary skills, to develop novel and innovative solutions to address TIPS-at-Scale. The CDT will produce a pipeline of such researchers and leaders trained to PhD level. It will build on very strong existing links with organisations such as Vodafone, Google, HP, Airbus , Thales, Symantec, IBM, Babcock, NCC Group, Altran, Wessex Water, Cybernetica and Embecosm, all of which have contributed to co-creation of the CDT and are committed to close engagement with it. Both universities will use their business development teams to further engage with these and other relevant organisations. Major opportunities for generating economic and societal benefits exist with the planned Temple Quarter Enterprise Campus of University of Bristol (due to open in 2021) - with a focus on co-creation of a suite of PG training programmes with industry - and the Bath Innovation Centre. The CDT will also leverage the various impact channels of the three EPSRC-NCSC Research Institutes, the PETRAS Hub and the CREST Centre in which the two Universities play a major role. Both universities already have research and PhD studentships directly funded by industry and agencies such as DSTL, NCSC and GCHQ as well as iCASE awards hence close relationships already exist to maximise impact. The CDT will also organise public debates and social media campaigns to encourage public participation and shaping of TIPS-at-scale discussions and solutions.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022465/1 01/04/2019 30/09/2027
2602709 Studentship EP/S022465/1 01/10/2021 19/09/2025 John Chapman