Solar-driven Plasmonic Catalysis

Lead Research Organisation: Newcastle University
Department Name: Sch of Natural & Environmental Sciences

Abstract

This project addresses the major challenges associated with precise manipulation of interfaces for atom/charge transfer in catalysis and energy conversion, where high priority goals include visible-light plasmonic catalysis and high selectivity in e.g. CO2 conversion to MeOH. A range of new binary and ternary catalytic materials prepared from polyoxometalate-stabilised metal nanoparticles (POM@MNP) and polymeric carbon nitride (PCN) will build on previous work of the remarkable synergy in POM@Ru thermal, photo- and electro-catalysis.

Underpinning the project is the synthesis of heterometal-substituted polyoxometalates (POMs) as tunable, single-atom, molecular metal oxide catalysts. These will be used to prepare POM@AuNP and POM@CuNP binary systems in order to precisely locate reactive metal sites (e.g. Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Zn) at the metal-oxide/metal interface. Ternary materials obtained by supporting these POM@MNP on PCN will provide additional functionality derived from the photo- and electro-active PCN. POM/MNP interfaces will be analysed by high resolution electron microscopy and the distribution of NPs on PCN will be determined using electron tomography. Thermal and photocatalytic experiments will be studied by time-resolved spectroscopy and supplemented by studies of ultrafast charge extraction dynamics. Charge transfer at POM/MNP, POM/PCN, MNP/PCN and POM@MNP/PCN interfaces will be key to exploiting the unique photo physics of the new binary and ternary materials for visible light plasmonic catalysis. Fine tuning the properties of these multicomponent catalysts will require a deeper understanding of these systems, and this will be aided by DFT computational modelling studies.

Precise manipulation of interfaces at the atomic level will improve activity and selectivity and enable catalyst design for new processes, providing better capabilities for CO2 utilisation and related energy conversion and storage.

Planned Impact

ReNU's enhanced doctoral training programme delivered by three uniquely co-located major UK universities, Northumbria (UNN), Durham (DU) and Newcastle (NU), addresses clear skills needs in small-to-medium scale renewable energy (RE) and sustainable distributed energy (DE). It was co-designed by a range of companies and is supported by a balanced portfolio of 27 industrial partners (e.g. Airbus, Siemens and Shell) of which 12 are small or medium size enterprises (SMEs) (e.g. Enocell, Equiwatt and Power Roll). A further 9 partners include Government, not-for-profit and key network organisations. Together these provide a powerful, direct and integrated pathway to a range of impacts that span whole energy systems.

Industrial partners will interact with ReNU in three main ways: (1) through the Strategic Advisory Board; (2) by providing external input to individual doctoral candidate's projects; and (3) by setting Industrial Challenge Mini-Projects. These interactions will directly benefit companies by enabling them to focus ReNU's training programme on particular needs, allowing transfer of best practice in training and state-of-the-art techniques, solution approaches to R&D challenges and generation of intellectual property. Access to ReNU for new industrial partners that may wish to benefit from ReNU is enabled by the involvement of key networks and organisations such as the North East Automotive Alliance, the Engineering Employer Federation, and Knowledge Transfer Network (Energy).

In addition to industrial partners, ReNU includes Government organisations and not for-profit-organisations. These partners provide pathways to create impact via policy and public engagement. Similarly, significant academic impact will be achieved through collaborations with project partners in Singapore, Canada and China. This impact will result in research excellence disseminated through prestigious academic journals and international conferences to the benefit of the global community working on advanced energy materials.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023836/1 01/04/2019 30/09/2027
2603732 Studentship EP/S023836/1 01/10/2021 30/09/2025 Amar Mohammed