Novel braze coating materials & processes for sustainable aeroengine applications
Lead Research Organisation:
Swansea University
Department Name: College of Engineering
Abstract
Project Aims
The work will start with the comprehensive undertaking of mapping Reaction Engines' existing assembly and vacuum brazing routes for heat exchanger parts. A baseline material and manufacturing component will be identified for both steel and nickel alloy parts, representative of current tubular heat exchanger designs. An assessment of existing commercial brazing alloys will be done to understand the current limits for repeatability, and performance. Methods for application of the brazing consumable to the component surfaces, at the required locations, will be assessed - laser cladding, thermal spray, cold spray, physical vapour deposition, or hybrid surface additive manufacturing routes are coating methods of interest. The manually intensive placement methods currently in use will be replaced. Materials characterisation will be undertaken to identify optimal process parameters and material properties, including mechanical testing, metallography and thermophysical property measurement. In a final stage novel coating alloys (e.g., high entropy alloys) will be formulated, manufactured, and tested for comparison to the existing commercial systems.
The work will start with the comprehensive undertaking of mapping Reaction Engines' existing assembly and vacuum brazing routes for heat exchanger parts. A baseline material and manufacturing component will be identified for both steel and nickel alloy parts, representative of current tubular heat exchanger designs. An assessment of existing commercial brazing alloys will be done to understand the current limits for repeatability, and performance. Methods for application of the brazing consumable to the component surfaces, at the required locations, will be assessed - laser cladding, thermal spray, cold spray, physical vapour deposition, or hybrid surface additive manufacturing routes are coating methods of interest. The manually intensive placement methods currently in use will be replaced. Materials characterisation will be undertaken to identify optimal process parameters and material properties, including mechanical testing, metallography and thermophysical property measurement. In a final stage novel coating alloys (e.g., high entropy alloys) will be formulated, manufactured, and tested for comparison to the existing commercial systems.
People |
ORCID iD |
| Samuel Ross (Student) |
Studentship Projects
| Project Reference | Relationship | Related To | Start | End | Student Name |
|---|---|---|---|---|---|
| EP/T517987/1 | 30/09/2020 | 29/09/2025 | |||
| 2604568 | Studentship | EP/T517987/1 | 30/09/2021 | 29/09/2025 | Samuel Ross |