📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Sequential Decision making in probabilistic models

Lead Research Organisation: University of Cambridge
Department Name: Computer Science and Technology

Abstract

This proposal considers the problem of robust sequential decision making in non-linear environments. Reinforcement
learning has demonstrated high potential for solving complex problems in non-linear environments but has lacked
efficiency and robustness. We argue that in order to deploy reinforcement learning agents in the real world, it is essential to
develop similar efficiency and robustness properties that have been developed in control theory. We propose to leverage
the extensive control and probabilistic reasoning literature to improve RL algorithms and present two interesting research
directions. The first one considers using Sequential Monte-Carlo methods to improve planning for non-linear
environments. The second direction focuses on designing robust controllers by exploring the connections between
adversarial learning, robust control theory, and uncertainty modelling.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/T517847/1 30/09/2020 29/09/2025
2744311 Studentship EP/T517847/1 30/09/2020 29/09/2023 Pierre Thodoroff