Structural Integrity of W-CuCrZr composite with optimised topology for nuclear fusion

Lead Research Organisation: University of Birmingham
Department Name: School of Physics and Astronomy

Abstract

Nuclear fusion has enormous potential to offer a sustainable and clean electricity source, but great materials engineering challenges must be overcome before this can be realised. Enabling the next generation of nuclear fusion power plants places significant demand on new metallic materials which can withstand and operate in extreme environments. Tungsten-cooper composites are next generation plasma facing fusion materials. This project aims to develop a process route for tungsten-cooper composites and create a fundamental understanding of the failure in tungsten-cooper composites via multiscale mechanical and microstructure characterisation. With this new understanding, we will develop an imaging-based finite element predictive model for optimising the topology of the tungsten-cooper interface to enable the manufacturing of a heat exchanger with greater thermal resilience and improved service life.

Planned Impact

1. Our primary impact will be by supplying the UK knowledge economy with skilled multidisciplinary researchers, equipped with the technical and transferable skills to establish the UK as pre-eminent in topology-based future technologies. The training they receive will make them proficient in the demands of the translation of academic science (with a broad background in condensed matter physics, materials science and applied electromagnetics) to industry, with direct experience from internship and industry engagement days. With their exposure to both theoretical research (including modelling and big data-driven problems) and experimental practice, our graduates will be ideally equipped to tackle research challenges of the future and communicate to a broad audience, ready to lead teams made up of diverse specialised components. The potential impact of our researchers will be enhanced by a broad programme of transferable skills, focusing on innovation, entrepreneurship and responsible research. Beneficiaries here will include the students themselves as they embark on future careers intertwining academic research and industry, as well as the other sectors listed below.

2. The research undertaken by students in the CDT will have impact on the future direction of topological science. Related disciplines, including physics, materials science, mathematics, and information technology will benefit from the cross-disciplinary fertilisation it will enable. The CDT will not only provide an interface between research in physical sciences and engineering, but also provide a route for academia to interact effectively with industry. This will help organise researchers from different disciplines to collaborate around the needs of future technology to design materials based on topological properties.

3. Our research will enable industries to set the direction of topological research around the needs of commercial research and development, leading to wealth generation for the UK, and to influence the mindset of the next generation of future technologists. Specifically, topological design has the promise to revolutionise devices and materials relevant to communications, microwave and terahertz technologies, optical information processing, manufacturing, and cybersecurity. Through partnership with organisations from the wider knowledge sector, we will deepen the relationship between academic research and disciplines including IP law and scientific software development.

4. Our CDT will also have impact on the wider academic community. New specialist courses and training in transferable skills will be developed utilising cutting-edge multimedia technologies. Our international research collaborators, including prominent global laboratories, will benefit from placements and research visits of the CDT students. Our interdisciplinary research, combining the needs of academia and industry will be an exemplar of the effectiveness of the CDT model on an international stage.

5. The wider community will benefit from our organised public engagement activities. These will include direct interaction activities, such as demonstrating at the Birmingham Thinktank Science Centre, the Royal Society Summer Exhibition, local schools and community centres.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S02297X/1 01/07/2019 31/12/2027
2746280 Studentship EP/S02297X/1 01/10/2022 30/09/2026 John Cooper