Insights on metal nanoclusters (MNCs) (de)hydrogenation for on-board hydrogen storage application using electron microscopy and spectroscopy technique

Lead Research Organisation: University of Nottingham
Department Name: Sch of Chemistry

Abstract

The development of volumetric efficient solid-state hydrogen (H2) storage materials is crucial for decarbonisation in the transport sector. As one of the most promising H2 storage materials, the advantages of magnesium hydride nanoparticles includes their high H2 storage capacity (7.6 wt.%) and low cost ($3/kg). However, slow kinetics and a high working temperature (ca. 250 C) limit its commercial application for on-board H2 storage. In order to improve its properties (higher kinetics, lower temperature), this project will utilise metal nanoclusters (MNCs), which are fundamentally different compared to more widely used metal nanoparticles (diameters >2 nm), where the majority of metal atoms remain 'hidden' within the lattice and are excluded from participation in useful chemistry. In contrast, the majority of the atoms in MNCs are fully accessible for physicochemical processes, while new functional properties, inaccessible in bulk metals or in nanoparticles, can emerge as a result of confinement in MNCs. Theoretical calculations predict that nano-tuning could reduce the (de)hydrogenation reaction energy when NCs of Mg/MgH2 are used, therefore reducing the working temperature [JACS, 2005, 127, 16675-80]. This would substantially reduce the on-board H2 storage cost enabling their use in fuel cell vehicles for zero-emission transport. This is a collaboration project between University of Nottingham and Diamond Light Source.

The specific steps will involve (i) synthesis of graphitic carbon nitride (g-C3N4), which is an ideal support for stabilisation of MNCs due to its nitrogen "cavity" (Nottingham), (ii) depositing a series of MNCs with different sizes and composition (i.e. Mg and Pd, and their nano-alloys) on g-C3N4 and their characterisation: AC-STEM including chemical mapping and depth profile, and XPS / NAP-XPS in Diamond, (iii) Investigating the electronic changes on MNCs under H2 environment at different temperatures (AC-STEM and NAP-XPS in Diamond), (iv) evaluation of H2 storage properties including capacity, kinetics, thermodynamics and cycling test (in Nottingham).

Planned Impact

The RI self-assessment of an individual's research projects will mean that the cohort have a high degree of understanding of the potential beneficial impact from their research on the economy, society and the environment. This then places the cohort as the best ambassadors for the CDT, hence most pathways to impact are through the students, facilitated by the CDT.

Industrial impact of this CDT is in working closely together with key industry players across the hydrogen sector, including through co-supervision, mentoring of doctoral students and industry involvement in CDT events. Our industrial stakeholders include those working on hydrogen production (ITM Power, Hydrogen Green Power, Pure Energy) and distribution (Northern Gas, Cadent), storage (Luxfer, Haydale, Far UK), safety (HSL, Shell, ITM Power), low carbon transport (Ulemco, Arcola Energy), heat and power (Bosch, Northern Gas).

Policy impact of the CDT research and other activities will occur through cohort interactions with local authorities (Nottingham City Council) and LEPs (LLEP, D2N2) through the CDT workshops and conference. A CDT in Parliament day will be facilitated by UKHFCA (who have experience in lobbying the government on behalf of their members) and enable the cohort to visit the Parliamentary Office for Science and Technology (POST), BEIS and to meet with local MPs. Through understanding the importance of evidence gathering by Government Departments and the role this has in informing policy, the cohort will be encouraged to take the initiative in submitting evidence to any relevant requests for evidence from POST.

Public impact will be achieved through developing knowledge-supported interest of public in renewable energy in particular the role of hydrogen systems and infrastructure. Special attention will be paid to demonstration of safety solutions to prove that hydrogen is not more or less dangerous compared to other fuels when it is dealt with professionally and systems are engineered properly. The public, who are ultimate beneficiaries of hydrogen technologies, will be engaged through different communication channels and the CDT activities to be aware of our work. We will communicate important conclusions of the CDT research at regional, national, and international events as appropriate.

Socio-economic impact. There are significant socio-economic opportunities, including employment, for hydrogen technologies as the UK moves to low carbon transport, heat and power supply. For the UK to have the opportunity to take an international lead in hydrogen sector we need future innovation leaders. The CDT supported by partners we will create conditions for and exploit the opportunities to maximise socio-economic impact.

Students will be expected in years 3 and 4 to undertake a research visit to an industry partner and/or to undertake a knowledge transfer secondment. It is expected these visits (supported by the CDT) will be a significant benefit to the student's research project through access to industry expertise, exploring the potential impact of their research and will also be a valuable networking experience.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023909/1 01/04/2019 30/09/2031
2750864 Studentship EP/S023909/1 01/10/2022 30/09/2026 Thomas Liddy